Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474870602> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2474870602 abstract "This thesis deals with the behaviour modulo n of linear recurring sequences of integers with characteristic polynomial ƒ ( x ) where n is a positive integer and ƒ ( x ) is a monic polynomial of degree k. Let α [subscript 1], α [subscript 2],...,α [subscript k] be the zeros of ƒ ( x ) and D ( ƒ ) ≠ 0 its discriminant. We focus on the v-sequence ( v [subscript j] ), defined by v [subscript j] = α[superscript j] over [subscript 1] + α [superscript j] over [subscript 2] + ... + α [superscript j] over [subscript k] for j ≥ 0. Our main interest is in algebraic congruences modulo n which hold when n is a prime and which involve only terms of the sequence and rational integers. For k = 1,2 such results have been used extensively in primality testing and have led to the study of various types of pseudoprimes. For k = 3, such results have been studied by Adams and Shanks ( 1 ) under the further assumption ƒ ( 0 ) = - 1. For general k, quite different approaches have been taken by Gurak ( 2 ) and Szekeres ( 3 ). The infinite test matrix modulo n is the infinite matrix M with rows and columns numbered 0,1,2 ... whose ( i, j ) entry is m [subscript ij], the least residue modulo n of v [subscript in + j] - v [subscript i + j] for i ≥ 0 and j ≥ 0. We study the congruence properties of M and especially of the k x k submatrix M ( [superscript k] ) determined by rows and columns 0 to k - 1. Chapters 1 and 2 introduce the thesis and summarise auxiliary results. Chapter 3 presents background on linear recurring sequences with an emphasis on the matrix approach, including the v - sequence and the k u - sequences ( whose initial vectors are the rows of Ik ). Chapter 4 comprises theoretical study of the properties of M for a general k, both when n is a prime and for general n, together with investigation of the condition of Gurak ( 2 ). For ( n, k!D ( ƒ ) ) = 1, we show that the condition of Szekeres is equivalent to the condition that m [subscript i0] = 0 for 1 ≤ i ≤ k and also to certain permutation conditions. Gurak ' s condition is then described using these conditions. Chapter 5 assumes k = 3. For this case we study congruences modulo n satisfied by the m [subscript ij] when n is a prime, and hence develop a combination of tests on M ( [superscript 3] ) which are passed by all primes. We report on extensive computer investigation of composites passing these tests. Such composites are found to be rare. Investigation of the relevant work of Adams and Shanks and colleagues, together with use of the permutation condition of Chapter 4, leads to a modification of the earlier tests on M ( [superscript 3] ). Under suitable assumptions we show that the new modified condition is equivalent to the basic condition of Adams and Shanks and also to that of Gurak but has significant advantages over both. References ( 1 ) Adams, W. and Shanks, D. Strong primality tests that are not sufficient, Math. Comp., 39, 1982, 255-300. ( 2 ) Gurak, S. Pseudoprimes for higher - order linear recurrence sequences, Math. Comp., 55, 1990, 783-813. ( 3 ) Szekeres,…" @default.
- W2474870602 created "2016-07-22" @default.
- W2474870602 creator A5031093756 @default.
- W2474870602 date "2006-01-01" @default.
- W2474870602 modified "2023-09-24" @default.
- W2474870602 title "Congruence properties of linear recurring sequences" @default.
- W2474870602 hasPublicationYear "2006" @default.
- W2474870602 type Work @default.
- W2474870602 sameAs 2474870602 @default.
- W2474870602 citedByCount "0" @default.
- W2474870602 crossrefType "dissertation" @default.
- W2474870602 hasAuthorship W2474870602A5031093756 @default.
- W2474870602 hasConcept C114614502 @default.
- W2474870602 hasConcept C118615104 @default.
- W2474870602 hasConcept C132074034 @default.
- W2474870602 hasConcept C134306372 @default.
- W2474870602 hasConcept C154945302 @default.
- W2474870602 hasConcept C163635466 @default.
- W2474870602 hasConcept C184992742 @default.
- W2474870602 hasConcept C191421660 @default.
- W2474870602 hasConcept C2524010 @default.
- W2474870602 hasConcept C33923547 @default.
- W2474870602 hasConcept C41008148 @default.
- W2474870602 hasConcept C54732982 @default.
- W2474870602 hasConcept C78397625 @default.
- W2474870602 hasConcept C90119067 @default.
- W2474870602 hasConcept C9973445 @default.
- W2474870602 hasConceptScore W2474870602C114614502 @default.
- W2474870602 hasConceptScore W2474870602C118615104 @default.
- W2474870602 hasConceptScore W2474870602C132074034 @default.
- W2474870602 hasConceptScore W2474870602C134306372 @default.
- W2474870602 hasConceptScore W2474870602C154945302 @default.
- W2474870602 hasConceptScore W2474870602C163635466 @default.
- W2474870602 hasConceptScore W2474870602C184992742 @default.
- W2474870602 hasConceptScore W2474870602C191421660 @default.
- W2474870602 hasConceptScore W2474870602C2524010 @default.
- W2474870602 hasConceptScore W2474870602C33923547 @default.
- W2474870602 hasConceptScore W2474870602C41008148 @default.
- W2474870602 hasConceptScore W2474870602C54732982 @default.
- W2474870602 hasConceptScore W2474870602C78397625 @default.
- W2474870602 hasConceptScore W2474870602C90119067 @default.
- W2474870602 hasConceptScore W2474870602C9973445 @default.
- W2474870602 hasLocation W24748706021 @default.
- W2474870602 hasOpenAccess W2474870602 @default.
- W2474870602 hasPrimaryLocation W24748706021 @default.
- W2474870602 hasRelatedWork W1572916059 @default.
- W2474870602 hasRelatedWork W1996533598 @default.
- W2474870602 hasRelatedWork W1997860079 @default.
- W2474870602 hasRelatedWork W2070756261 @default.
- W2474870602 hasRelatedWork W2071192740 @default.
- W2474870602 hasRelatedWork W2084766291 @default.
- W2474870602 hasRelatedWork W2156444325 @default.
- W2474870602 hasRelatedWork W2168272700 @default.
- W2474870602 hasRelatedWork W2275817839 @default.
- W2474870602 hasRelatedWork W2277868817 @default.
- W2474870602 hasRelatedWork W2436513826 @default.
- W2474870602 hasRelatedWork W2518740395 @default.
- W2474870602 hasRelatedWork W2748865014 @default.
- W2474870602 hasRelatedWork W2802597838 @default.
- W2474870602 hasRelatedWork W2891256777 @default.
- W2474870602 hasRelatedWork W2963040980 @default.
- W2474870602 hasRelatedWork W3132424508 @default.
- W2474870602 hasRelatedWork W3154545231 @default.
- W2474870602 hasRelatedWork W893669676 @default.
- W2474870602 hasRelatedWork W67568381 @default.
- W2474870602 isParatext "false" @default.
- W2474870602 isRetracted "false" @default.
- W2474870602 magId "2474870602" @default.
- W2474870602 workType "dissertation" @default.