Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474880037> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2474880037 endingPage "56" @default.
- W2474880037 startingPage "53" @default.
- W2474880037 abstract "Abstract. Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm." @default.
- W2474880037 created "2016-07-22" @default.
- W2474880037 creator A5012576415 @default.
- W2474880037 creator A5022141663 @default.
- W2474880037 creator A5025319461 @default.
- W2474880037 date "2016-06-02" @default.
- W2474880037 modified "2023-10-16" @default.
- W2474880037 title "A UNIVERSAL DE-NOISING ALGORITHM FOR GROUND-BASED LIDAR SIGNAL" @default.
- W2474880037 cites W2000099454 @default.
- W2474880037 cites W2007221293 @default.
- W2474880037 cites W2020141429 @default.
- W2474880037 cites W2024104872 @default.
- W2474880037 cites W2060483670 @default.
- W2474880037 cites W2098395403 @default.
- W2474880037 cites W2098536579 @default.
- W2474880037 cites W2129276500 @default.
- W2474880037 cites W2152328854 @default.
- W2474880037 cites W2487042671 @default.
- W2474880037 cites W608255002 @default.
- W2474880037 doi "https://doi.org/10.5194/isprs-archives-xli-b1-53-2016" @default.
- W2474880037 hasPublicationYear "2016" @default.
- W2474880037 type Work @default.
- W2474880037 sameAs 2474880037 @default.
- W2474880037 citedByCount "1" @default.
- W2474880037 countsByYear W24748800372020 @default.
- W2474880037 crossrefType "journal-article" @default.
- W2474880037 hasAuthorship W2474880037A5012576415 @default.
- W2474880037 hasAuthorship W2474880037A5022141663 @default.
- W2474880037 hasAuthorship W2474880037A5025319461 @default.
- W2474880037 hasBestOaLocation W24748800371 @default.
- W2474880037 hasConcept C11413529 @default.
- W2474880037 hasConcept C115961682 @default.
- W2474880037 hasConcept C127313418 @default.
- W2474880037 hasConcept C153294291 @default.
- W2474880037 hasConcept C154945302 @default.
- W2474880037 hasConcept C199360897 @default.
- W2474880037 hasConcept C205649164 @default.
- W2474880037 hasConcept C2779843651 @default.
- W2474880037 hasConcept C31972630 @default.
- W2474880037 hasConcept C41008148 @default.
- W2474880037 hasConcept C51399673 @default.
- W2474880037 hasConcept C62649853 @default.
- W2474880037 hasConcept C65440619 @default.
- W2474880037 hasConcept C89600930 @default.
- W2474880037 hasConcept C99498987 @default.
- W2474880037 hasConceptScore W2474880037C11413529 @default.
- W2474880037 hasConceptScore W2474880037C115961682 @default.
- W2474880037 hasConceptScore W2474880037C127313418 @default.
- W2474880037 hasConceptScore W2474880037C153294291 @default.
- W2474880037 hasConceptScore W2474880037C154945302 @default.
- W2474880037 hasConceptScore W2474880037C199360897 @default.
- W2474880037 hasConceptScore W2474880037C205649164 @default.
- W2474880037 hasConceptScore W2474880037C2779843651 @default.
- W2474880037 hasConceptScore W2474880037C31972630 @default.
- W2474880037 hasConceptScore W2474880037C41008148 @default.
- W2474880037 hasConceptScore W2474880037C51399673 @default.
- W2474880037 hasConceptScore W2474880037C62649853 @default.
- W2474880037 hasConceptScore W2474880037C65440619 @default.
- W2474880037 hasConceptScore W2474880037C89600930 @default.
- W2474880037 hasConceptScore W2474880037C99498987 @default.
- W2474880037 hasLocation W24748800371 @default.
- W2474880037 hasLocation W24748800372 @default.
- W2474880037 hasOpenAccess W2474880037 @default.
- W2474880037 hasPrimaryLocation W24748800371 @default.
- W2474880037 hasRelatedWork W1669643531 @default.
- W2474880037 hasRelatedWork W2008656436 @default.
- W2474880037 hasRelatedWork W2023558673 @default.
- W2474880037 hasRelatedWork W2039154422 @default.
- W2474880037 hasRelatedWork W2089302322 @default.
- W2474880037 hasRelatedWork W2134924024 @default.
- W2474880037 hasRelatedWork W2389050098 @default.
- W2474880037 hasRelatedWork W2517104666 @default.
- W2474880037 hasRelatedWork W2522514901 @default.
- W2474880037 hasRelatedWork W2895616727 @default.
- W2474880037 hasVolume "XLI-B1" @default.
- W2474880037 isParatext "false" @default.
- W2474880037 isRetracted "false" @default.
- W2474880037 magId "2474880037" @default.
- W2474880037 workType "article" @default.