Matches in SemOpenAlex for { <https://semopenalex.org/work/W2474974306> ?p ?o ?g. }
- W2474974306 endingPage "768" @default.
- W2474974306 startingPage "750" @default.
- W2474974306 abstract "The enormous and increasing cost of health care is burdensome for most low- to middle-income families, especially those families whose members are battling chronic diseases. If effective interventions can be conducted at earlier stages, many costs are avoidable. Correspondingly, predicting the future disease one patient may develop with accuracy is a crucial step towards solving this problem. We have developed a system called CAC, which integrates Clustering, Association analysis and Collaborative filtering to predict patients’ future conditions. The data-set used in this study is health insurance data collected from a provincial capital city of China. Specifically, the data-set includes 151,237 insured patients who have reimbursement records between 2007 and 2014. The patients are artificially classified into acute patients and chronic patients. For both sets of patients, we utilise a training set to generate the prediction rules and a testing set to test the prediction results. The results show that for 71% of acute patients and 82% of chronic patients, their future conditions are predictable." @default.
- W2474974306 created "2016-07-22" @default.
- W2474974306 creator A5016797934 @default.
- W2474974306 creator A5020076931 @default.
- W2474974306 creator A5035535226 @default.
- W2474974306 creator A5043474067 @default.
- W2474974306 date "2016-07-15" @default.
- W2474974306 modified "2023-10-01" @default.
- W2474974306 title "Algorithmic prediction of individual diseases" @default.
- W2474974306 cites W1130077638 @default.
- W2474974306 cites W1790954942 @default.
- W2474974306 cites W1972588194 @default.
- W2474974306 cites W1978394996 @default.
- W2474974306 cites W1985855931 @default.
- W2474974306 cites W1992499547 @default.
- W2474974306 cites W2012035409 @default.
- W2474974306 cites W2022985331 @default.
- W2474974306 cites W2057784501 @default.
- W2474974306 cites W2059424469 @default.
- W2474974306 cites W2060168606 @default.
- W2474974306 cites W2063351977 @default.
- W2474974306 cites W2063820885 @default.
- W2474974306 cites W2069870183 @default.
- W2474974306 cites W2103868202 @default.
- W2474974306 cites W2110121091 @default.
- W2474974306 cites W2128891400 @default.
- W2474974306 cites W2134783591 @default.
- W2474974306 cites W2143945764 @default.
- W2474974306 cites W2144593802 @default.
- W2474974306 cites W2150376021 @default.
- W2474974306 cites W2156507187 @default.
- W2474974306 cites W2159338259 @default.
- W2474974306 cites W2165612380 @default.
- W2474974306 cites W2168301815 @default.
- W2474974306 cites W2170123185 @default.
- W2474974306 cites W2197840208 @default.
- W2474974306 cites W2267585805 @default.
- W2474974306 cites W4213009331 @default.
- W2474974306 cites W4300601563 @default.
- W2474974306 cites W91834292 @default.
- W2474974306 doi "https://doi.org/10.1080/00207543.2016.1208372" @default.
- W2474974306 hasPublicationYear "2016" @default.
- W2474974306 type Work @default.
- W2474974306 sameAs 2474974306 @default.
- W2474974306 citedByCount "9" @default.
- W2474974306 countsByYear W24749743062018 @default.
- W2474974306 countsByYear W24749743062021 @default.
- W2474974306 countsByYear W24749743062022 @default.
- W2474974306 countsByYear W24749743062023 @default.
- W2474974306 crossrefType "journal-article" @default.
- W2474974306 hasAuthorship W2474974306A5016797934 @default.
- W2474974306 hasAuthorship W2474974306A5020076931 @default.
- W2474974306 hasAuthorship W2474974306A5035535226 @default.
- W2474974306 hasAuthorship W2474974306A5043474067 @default.
- W2474974306 hasConcept C124101348 @default.
- W2474974306 hasConcept C144133560 @default.
- W2474974306 hasConcept C154945302 @default.
- W2474974306 hasConcept C159110408 @default.
- W2474974306 hasConcept C160735492 @default.
- W2474974306 hasConcept C162118730 @default.
- W2474974306 hasConcept C162324750 @default.
- W2474974306 hasConcept C177264268 @default.
- W2474974306 hasConcept C177713679 @default.
- W2474974306 hasConcept C199360897 @default.
- W2474974306 hasConcept C27415008 @default.
- W2474974306 hasConcept C2779703844 @default.
- W2474974306 hasConcept C2987552334 @default.
- W2474974306 hasConcept C41008148 @default.
- W2474974306 hasConcept C50522688 @default.
- W2474974306 hasConcept C58489278 @default.
- W2474974306 hasConcept C71924100 @default.
- W2474974306 hasConcept C73555534 @default.
- W2474974306 hasConceptScore W2474974306C124101348 @default.
- W2474974306 hasConceptScore W2474974306C144133560 @default.
- W2474974306 hasConceptScore W2474974306C154945302 @default.
- W2474974306 hasConceptScore W2474974306C159110408 @default.
- W2474974306 hasConceptScore W2474974306C160735492 @default.
- W2474974306 hasConceptScore W2474974306C162118730 @default.
- W2474974306 hasConceptScore W2474974306C162324750 @default.
- W2474974306 hasConceptScore W2474974306C177264268 @default.
- W2474974306 hasConceptScore W2474974306C177713679 @default.
- W2474974306 hasConceptScore W2474974306C199360897 @default.
- W2474974306 hasConceptScore W2474974306C27415008 @default.
- W2474974306 hasConceptScore W2474974306C2779703844 @default.
- W2474974306 hasConceptScore W2474974306C2987552334 @default.
- W2474974306 hasConceptScore W2474974306C41008148 @default.
- W2474974306 hasConceptScore W2474974306C50522688 @default.
- W2474974306 hasConceptScore W2474974306C58489278 @default.
- W2474974306 hasConceptScore W2474974306C71924100 @default.
- W2474974306 hasConceptScore W2474974306C73555534 @default.
- W2474974306 hasFunder F4320321001 @default.
- W2474974306 hasIssue "3" @default.
- W2474974306 hasLocation W24749743061 @default.
- W2474974306 hasOpenAccess W2474974306 @default.
- W2474974306 hasPrimaryLocation W24749743061 @default.
- W2474974306 hasRelatedWork W1559971515 @default.
- W2474974306 hasRelatedWork W199645745 @default.
- W2474974306 hasRelatedWork W1998797251 @default.