Matches in SemOpenAlex for { <https://semopenalex.org/work/W2475212181> ?p ?o ?g. }
- W2475212181 endingPage "169" @default.
- W2475212181 startingPage "160" @default.
- W2475212181 abstract "Natural biomaterials such as collagen show promise in tissue engineering applications due to their inherent bioactivity. The main limitation of collagen is its low mechanical strength and somewhat unpredictable and rapid degradation rate; however, combining collagen with another material, such as chitosan, can reinforce the scaffold mechanically and may improve the rate of degradation. Additionally, the high cost and the risk of prion transmission associated with mammal-derived collagen has prompted research into alternative sources such as marine-origin collagen. In this context, the overall goal of this study was to determine if the incorporation of chitosan into collagen scaffolds could improve the mechanical and biological properties of the scaffold. In addition the study assessed if collagen, derived from salmon skin (marine), can provide an alternative to collagen derived from bovine tendon (mammal) for tissue engineering applications. Scaffold architecture and mechanical properties were assessed as well as their ability to support mesenchymal stem cell growth and differentiation. Overall, the addition of chitosan to bovine and salmon skin-derived collagen scaffolds improved the mechanical properties, increasing the compressive strength, swelling ratio and prolonged the degradation rate. Mesenchymal stem cell (MSC) attachment and proliferation was most improved on the bovine-derived collagen scaffold containing a 75:25 ratio of collagen:chitosan, and when MSC osteogenic and chondrogenic potential on the scaffold was assessed, a significant increase in calcium production (p < 0.001) and sulfated glycosaminoglycan (sGAG) production (p < 0.001) was observed respectively. Regardless of chitosan content, the bovine-derived collagen scaffolds out-performed the salmon skin-derived collagen scaffolds, displaying a larger pore size and higher percentage porosity, more regular architecture, higher compressive modulus, a greater capacity for water uptake and allowed for more MSC proliferation and differentiation. This versatile scaffold incorporating the marine biomaterial chitosan show great potential as appropriate platforms for promoting orthopaedic tissue repair while the use of salmon skin-derived collagen may be more suitable in the repair of soft tissues such as skin. Collagen is commonly used in tissue engineering due to its biocompatibility; however, it has low mechanical strength and an unpredictable degradation rate. In addition, high cost and risk of prion transmission associated with mammalian-derived collagen has prompted research into alternative collagen sources, namely, marine-derived collagen. In this study, scaffolds made from salmon-skin collagen were compared to the more commonly used bovine-derived collagen with a focus on orthopaedic applications. To improve the mechanical properties of these scaffolds, another marine biomaterial, chitosan, was added to produce scaffolds with increased mechanical stability. The collagen-chitosan composites were also shown to support mesenchymal stem cell differentiation towards both bone and cartilage tissue. This multi-functional scaffold therefore has potential in both bone and cartilage regeneration applications." @default.
- W2475212181 created "2016-07-22" @default.
- W2475212181 creator A5009385578 @default.
- W2475212181 creator A5018594408 @default.
- W2475212181 creator A5024865720 @default.
- W2475212181 creator A5041545765 @default.
- W2475212181 creator A5041640348 @default.
- W2475212181 creator A5064641182 @default.
- W2475212181 creator A5066974810 @default.
- W2475212181 creator A5081499203 @default.
- W2475212181 date "2016-10-01" @default.
- W2475212181 modified "2023-10-13" @default.
- W2475212181 title "Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality" @default.
- W2475212181 cites W1922742595 @default.
- W2475212181 cites W1968516916 @default.
- W2475212181 cites W1969030848 @default.
- W2475212181 cites W1971013374 @default.
- W2475212181 cites W1976700640 @default.
- W2475212181 cites W1976928264 @default.
- W2475212181 cites W1991755374 @default.
- W2475212181 cites W1993414689 @default.
- W2475212181 cites W1996144874 @default.
- W2475212181 cites W1996659523 @default.
- W2475212181 cites W2000730633 @default.
- W2475212181 cites W2003847663 @default.
- W2475212181 cites W2006268447 @default.
- W2475212181 cites W2007435139 @default.
- W2475212181 cites W2010824264 @default.
- W2475212181 cites W2013679718 @default.
- W2475212181 cites W2017189138 @default.
- W2475212181 cites W2024105738 @default.
- W2475212181 cites W2024364032 @default.
- W2475212181 cites W2026285314 @default.
- W2475212181 cites W2029326558 @default.
- W2475212181 cites W2031217677 @default.
- W2475212181 cites W2044266061 @default.
- W2475212181 cites W2044283650 @default.
- W2475212181 cites W2046319827 @default.
- W2475212181 cites W2046425583 @default.
- W2475212181 cites W2046613022 @default.
- W2475212181 cites W2050875646 @default.
- W2475212181 cites W2051660608 @default.
- W2475212181 cites W2056280100 @default.
- W2475212181 cites W2060078219 @default.
- W2475212181 cites W2065299326 @default.
- W2475212181 cites W2067522447 @default.
- W2475212181 cites W2068867114 @default.
- W2475212181 cites W2070199257 @default.
- W2475212181 cites W2071244742 @default.
- W2475212181 cites W2082281489 @default.
- W2475212181 cites W2082414556 @default.
- W2475212181 cites W2095507086 @default.
- W2475212181 cites W2096855516 @default.
- W2475212181 cites W2101601223 @default.
- W2475212181 cites W2109793406 @default.
- W2475212181 cites W2111145925 @default.
- W2475212181 cites W2117757083 @default.
- W2475212181 cites W2118501085 @default.
- W2475212181 cites W2122841856 @default.
- W2475212181 cites W2124195334 @default.
- W2475212181 cites W2126424577 @default.
- W2475212181 cites W2127471027 @default.
- W2475212181 cites W2129552783 @default.
- W2475212181 cites W2134208433 @default.
- W2475212181 cites W2134799039 @default.
- W2475212181 cites W2139162721 @default.
- W2475212181 cites W2139636340 @default.
- W2475212181 cites W2146204519 @default.
- W2475212181 cites W2152276464 @default.
- W2475212181 cites W2154659743 @default.
- W2475212181 cites W2154967053 @default.
- W2475212181 cites W2157664121 @default.
- W2475212181 cites W2163691864 @default.
- W2475212181 cites W2171727206 @default.
- W2475212181 cites W2335352674 @default.
- W2475212181 cites W269401871 @default.
- W2475212181 cites W2749901077 @default.
- W2475212181 doi "https://doi.org/10.1016/j.actbio.2016.07.009" @default.
- W2475212181 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27402181" @default.
- W2475212181 hasPublicationYear "2016" @default.
- W2475212181 type Work @default.
- W2475212181 sameAs 2475212181 @default.
- W2475212181 citedByCount "120" @default.
- W2475212181 countsByYear W24752121812017 @default.
- W2475212181 countsByYear W24752121812018 @default.
- W2475212181 countsByYear W24752121812019 @default.
- W2475212181 countsByYear W24752121812020 @default.
- W2475212181 countsByYear W24752121812021 @default.
- W2475212181 countsByYear W24752121812022 @default.
- W2475212181 countsByYear W24752121812023 @default.
- W2475212181 crossrefType "journal-article" @default.
- W2475212181 hasAuthorship W2475212181A5009385578 @default.
- W2475212181 hasAuthorship W2475212181A5018594408 @default.
- W2475212181 hasAuthorship W2475212181A5024865720 @default.
- W2475212181 hasAuthorship W2475212181A5041545765 @default.
- W2475212181 hasAuthorship W2475212181A5041640348 @default.
- W2475212181 hasAuthorship W2475212181A5064641182 @default.
- W2475212181 hasAuthorship W2475212181A5066974810 @default.