Matches in SemOpenAlex for { <https://semopenalex.org/work/W2475273492> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2475273492 abstract "Many recommender systems rely on item ratings to predict users' preferences and generate recommendations. However, users often express preferences by referring to features of the items, e.g., I like Tarantino's movies. But, it has been shown that user models based on feature preferences may lead to wrong recommendations. In this paper we cope with this issue and we introduce a novel prediction model that generate better item recommendations, especially in cold-start situations, by exploiting both item-based and feature-based preferences. We also show that it is possible to optimize the combination of the two types of preferences when actively requesting them to users." @default.
- W2475273492 created "2016-07-22" @default.
- W2475273492 creator A5083044082 @default.
- W2475273492 creator A5088682335 @default.
- W2475273492 creator A5090179530 @default.
- W2475273492 date "2016-07-13" @default.
- W2475273492 modified "2023-10-16" @default.
- W2475273492 title "Recommendations with Optimal Combination of Feature-Based and Item-Based Preferences" @default.
- W2475273492 cites W163019065 @default.
- W2475273492 cites W1992380306 @default.
- W2475273492 cites W1994389483 @default.
- W2475273492 cites W2029903504 @default.
- W2475273492 cites W2030484290 @default.
- W2475273492 cites W2054141820 @default.
- W2475273492 cites W2061698594 @default.
- W2475273492 cites W2087467293 @default.
- W2475273492 cites W2101409192 @default.
- W2475273492 cites W2124187902 @default.
- W2475273492 cites W2150449434 @default.
- W2475273492 cites W2155912844 @default.
- W2475273492 cites W4234163981 @default.
- W2475273492 cites W44611163 @default.
- W2475273492 doi "https://doi.org/10.1145/2930238.2930282" @default.
- W2475273492 hasPublicationYear "2016" @default.
- W2475273492 type Work @default.
- W2475273492 sameAs 2475273492 @default.
- W2475273492 citedByCount "12" @default.
- W2475273492 countsByYear W24752734922017 @default.
- W2475273492 countsByYear W24752734922018 @default.
- W2475273492 countsByYear W24752734922019 @default.
- W2475273492 countsByYear W24752734922020 @default.
- W2475273492 countsByYear W24752734922021 @default.
- W2475273492 countsByYear W24752734922022 @default.
- W2475273492 crossrefType "proceedings-article" @default.
- W2475273492 hasAuthorship W2475273492A5083044082 @default.
- W2475273492 hasAuthorship W2475273492A5088682335 @default.
- W2475273492 hasAuthorship W2475273492A5090179530 @default.
- W2475273492 hasConcept C124101348 @default.
- W2475273492 hasConcept C138885662 @default.
- W2475273492 hasConcept C154945302 @default.
- W2475273492 hasConcept C2776401178 @default.
- W2475273492 hasConcept C41008148 @default.
- W2475273492 hasConcept C41895202 @default.
- W2475273492 hasConceptScore W2475273492C124101348 @default.
- W2475273492 hasConceptScore W2475273492C138885662 @default.
- W2475273492 hasConceptScore W2475273492C154945302 @default.
- W2475273492 hasConceptScore W2475273492C2776401178 @default.
- W2475273492 hasConceptScore W2475273492C41008148 @default.
- W2475273492 hasConceptScore W2475273492C41895202 @default.
- W2475273492 hasLocation W24752734921 @default.
- W2475273492 hasOpenAccess W2475273492 @default.
- W2475273492 hasPrimaryLocation W24752734921 @default.
- W2475273492 hasRelatedWork W2045393060 @default.
- W2475273492 hasRelatedWork W2166015963 @default.
- W2475273492 hasRelatedWork W2348097614 @default.
- W2475273492 hasRelatedWork W2348531541 @default.
- W2475273492 hasRelatedWork W2349359195 @default.
- W2475273492 hasRelatedWork W2772218528 @default.
- W2475273492 hasRelatedWork W2920691328 @default.
- W2475273492 hasRelatedWork W3107474891 @default.
- W2475273492 hasRelatedWork W3193538877 @default.
- W2475273492 hasRelatedWork W4285224442 @default.
- W2475273492 isParatext "false" @default.
- W2475273492 isRetracted "false" @default.
- W2475273492 magId "2475273492" @default.
- W2475273492 workType "article" @default.