Matches in SemOpenAlex for { <https://semopenalex.org/work/W2476816650> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2476816650 abstract "Ensemble machine learning algorithms (random forest and boosting) are applied to quickly and accurately detect economic turning points in the United States and in the Eurozone over the past three decades. The two key features of those algorithms are their abilities (i) to entertain a large number of predictors and (ii) to perform both variable selection and estimation simultaneously. The real-time ability to nowcast economic turning points is gauged by using investment strategies based on economic regimes induced by our models. When comparing predictive accuracy and profit measures, the model confidence set procedure is applied to avoid data snooping. We show that such investment strategies achieve impressive risk-adjusted returns: timing the market is thus possible." @default.
- W2476816650 created "2016-08-23" @default.
- W2476816650 creator A5060480488 @default.
- W2476816650 creator A5089358533 @default.
- W2476816650 date "2016-01-01" @default.
- W2476816650 modified "2023-10-03" @default.
- W2476816650 title "Investing Through Economic Cycles with Ensemble Machine Learning Algorithms" @default.
- W2476816650 cites W1516653184 @default.
- W2476816650 cites W1543490989 @default.
- W2476816650 cites W1678356000 @default.
- W2476816650 cites W1970487353 @default.
- W2476816650 cites W1982542799 @default.
- W2476816650 cites W1982933110 @default.
- W2476816650 cites W1988790447 @default.
- W2476816650 cites W1990420052 @default.
- W2476816650 cites W2024046085 @default.
- W2476816650 cites W2052980719 @default.
- W2476816650 cites W2062316037 @default.
- W2476816650 cites W2073162999 @default.
- W2476816650 cites W2077882877 @default.
- W2476816650 cites W2085940758 @default.
- W2476816650 cites W2088883866 @default.
- W2476816650 cites W2108963689 @default.
- W2476816650 cites W2110515654 @default.
- W2476816650 cites W2125536334 @default.
- W2476816650 cites W2144031751 @default.
- W2476816650 cites W2148015284 @default.
- W2476816650 cites W2150843644 @default.
- W2476816650 cites W2157825442 @default.
- W2476816650 cites W2462560862 @default.
- W2476816650 cites W2527457764 @default.
- W2476816650 cites W2617996772 @default.
- W2476816650 cites W2738003060 @default.
- W2476816650 cites W2770188460 @default.
- W2476816650 cites W2787894218 @default.
- W2476816650 cites W2890415972 @default.
- W2476816650 cites W2897596136 @default.
- W2476816650 cites W2911964244 @default.
- W2476816650 cites W3102708157 @default.
- W2476816650 cites W3103431624 @default.
- W2476816650 cites W3122039275 @default.
- W2476816650 cites W3122135772 @default.
- W2476816650 cites W3123369939 @default.
- W2476816650 cites W3125458234 @default.
- W2476816650 cites W3125714952 @default.
- W2476816650 cites W3125794914 @default.
- W2476816650 cites W4233565910 @default.
- W2476816650 cites W4255351486 @default.
- W2476816650 doi "https://doi.org/10.2139/ssrn.2785583" @default.
- W2476816650 hasPublicationYear "2016" @default.
- W2476816650 type Work @default.
- W2476816650 sameAs 2476816650 @default.
- W2476816650 citedByCount "3" @default.
- W2476816650 countsByYear W24768166502020 @default.
- W2476816650 countsByYear W24768166502021 @default.
- W2476816650 countsByYear W24768166502023 @default.
- W2476816650 crossrefType "journal-article" @default.
- W2476816650 hasAuthorship W2476816650A5060480488 @default.
- W2476816650 hasAuthorship W2476816650A5089358533 @default.
- W2476816650 hasConcept C11413529 @default.
- W2476816650 hasConcept C119857082 @default.
- W2476816650 hasConcept C154945302 @default.
- W2476816650 hasConcept C41008148 @default.
- W2476816650 hasConcept C45942800 @default.
- W2476816650 hasConceptScore W2476816650C11413529 @default.
- W2476816650 hasConceptScore W2476816650C119857082 @default.
- W2476816650 hasConceptScore W2476816650C154945302 @default.
- W2476816650 hasConceptScore W2476816650C41008148 @default.
- W2476816650 hasConceptScore W2476816650C45942800 @default.
- W2476816650 hasLocation W24768166501 @default.
- W2476816650 hasOpenAccess W2476816650 @default.
- W2476816650 hasPrimaryLocation W24768166501 @default.
- W2476816650 hasRelatedWork W4225307033 @default.
- W2476816650 hasRelatedWork W4281757034 @default.
- W2476816650 hasRelatedWork W4285046548 @default.
- W2476816650 hasRelatedWork W4285741730 @default.
- W2476816650 hasRelatedWork W4292969247 @default.
- W2476816650 hasRelatedWork W4311847748 @default.
- W2476816650 hasRelatedWork W4312241010 @default.
- W2476816650 hasRelatedWork W4313488044 @default.
- W2476816650 hasRelatedWork W4318677156 @default.
- W2476816650 hasRelatedWork W4376643315 @default.
- W2476816650 isParatext "false" @default.
- W2476816650 isRetracted "false" @default.
- W2476816650 magId "2476816650" @default.
- W2476816650 workType "article" @default.