Matches in SemOpenAlex for { <https://semopenalex.org/work/W2476889254> ?p ?o ?g. }
- W2476889254 endingPage "8168" @default.
- W2476889254 startingPage "8154" @default.
- W2476889254 abstract "In the chemical world, evolution is mirrored in the origin of nanoscale supramolecular structures from molecular subunits. The complexity of function acquired in a supramolecular system over a molecular subunit can be harnessed in the treatment of cancer. However, the design of supramolecular nanostructures is hindered by a limited atomistic level understanding of interactions between building blocks. Here, we report the development of a computational algorithm, which we term Volvox after the first multicellular organism, that sequentially integrates quantum mechanical energy-state- and force-field-based models with large-scale all-atomistic explicit water molecular dynamics simulations to design stable nanoscale lipidic supramolecular structures. In one example, we demonstrate that Volvox enables the design of a nanoscale taxane supramolecular therapeutic. In another example, we demonstrate that Volvox can be extended to optimizing the ratio of excipients to form a stable nanoscale supramolecular therapeutic. The nanoscale taxane supramolecular therapeutic exerts greater antitumor efficacy than a clinically used taxane in vivo. Volvox can emerge as a powerful tool in the design of nanoscale supramolecular therapeutics for effective treatment of cancer." @default.
- W2476889254 created "2016-08-23" @default.
- W2476889254 creator A5010475526 @default.
- W2476889254 creator A5011691171 @default.
- W2476889254 creator A5017461532 @default.
- W2476889254 creator A5033798694 @default.
- W2476889254 creator A5051178808 @default.
- W2476889254 creator A5052773445 @default.
- W2476889254 creator A5062881946 @default.
- W2476889254 creator A5069117082 @default.
- W2476889254 creator A5072136604 @default.
- W2476889254 creator A5081726526 @default.
- W2476889254 creator A5083494376 @default.
- W2476889254 creator A5083767613 @default.
- W2476889254 date "2016-07-29" @default.
- W2476889254 modified "2023-10-14" @default.
- W2476889254 title "Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy" @default.
- W2476889254 cites W1076073978 @default.
- W2476889254 cites W1414886268 @default.
- W2476889254 cites W1964779269 @default.
- W2476889254 cites W1965200769 @default.
- W2476889254 cites W1966686759 @default.
- W2476889254 cites W1968505138 @default.
- W2476889254 cites W1972979576 @default.
- W2476889254 cites W1976438734 @default.
- W2476889254 cites W1976499671 @default.
- W2476889254 cites W1977486075 @default.
- W2476889254 cites W1984939492 @default.
- W2476889254 cites W1985487126 @default.
- W2476889254 cites W1986025973 @default.
- W2476889254 cites W1987305339 @default.
- W2476889254 cites W1990316904 @default.
- W2476889254 cites W1991442336 @default.
- W2476889254 cites W2000805930 @default.
- W2476889254 cites W2002237790 @default.
- W2476889254 cites W2002516695 @default.
- W2476889254 cites W2012069610 @default.
- W2476889254 cites W2012556902 @default.
- W2476889254 cites W2013103004 @default.
- W2476889254 cites W2017948987 @default.
- W2476889254 cites W2019880908 @default.
- W2476889254 cites W2020678484 @default.
- W2476889254 cites W2026047120 @default.
- W2476889254 cites W2028893730 @default.
- W2476889254 cites W2029039324 @default.
- W2476889254 cites W2030574023 @default.
- W2476889254 cites W2032741311 @default.
- W2476889254 cites W2034365190 @default.
- W2476889254 cites W2036379364 @default.
- W2476889254 cites W2036488645 @default.
- W2476889254 cites W2036547515 @default.
- W2476889254 cites W2036811391 @default.
- W2476889254 cites W2047902191 @default.
- W2476889254 cites W2055154757 @default.
- W2476889254 cites W2062495971 @default.
- W2476889254 cites W2063274998 @default.
- W2476889254 cites W2065704671 @default.
- W2476889254 cites W2066414494 @default.
- W2476889254 cites W2078786745 @default.
- W2476889254 cites W2079315541 @default.
- W2476889254 cites W2082511916 @default.
- W2476889254 cites W2083342964 @default.
- W2476889254 cites W2083405070 @default.
- W2476889254 cites W2088547883 @default.
- W2476889254 cites W2091579503 @default.
- W2476889254 cites W2099102316 @default.
- W2476889254 cites W2104558356 @default.
- W2476889254 cites W2112927879 @default.
- W2476889254 cites W2115040835 @default.
- W2476889254 cites W2121678787 @default.
- W2476889254 cites W2121682672 @default.
- W2476889254 cites W2125780186 @default.
- W2476889254 cites W2132997840 @default.
- W2476889254 cites W2134905807 @default.
- W2476889254 cites W2142504874 @default.
- W2476889254 cites W2150249789 @default.
- W2476889254 cites W2163326536 @default.
- W2476889254 cites W2170743627 @default.
- W2476889254 cites W2171574023 @default.
- W2476889254 cites W2172084755 @default.
- W2476889254 cites W2278748511 @default.
- W2476889254 cites W2312338167 @default.
- W2476889254 cites W2319827088 @default.
- W2476889254 cites W2329114863 @default.
- W2476889254 cites W2917837889 @default.
- W2476889254 cites W2951813451 @default.
- W2476889254 doi "https://doi.org/10.1021/acsnano.6b00241" @default.
- W2476889254 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27452234" @default.
- W2476889254 hasPublicationYear "2016" @default.
- W2476889254 type Work @default.
- W2476889254 sameAs 2476889254 @default.
- W2476889254 citedByCount "17" @default.
- W2476889254 countsByYear W24768892542016 @default.
- W2476889254 countsByYear W24768892542017 @default.
- W2476889254 countsByYear W24768892542018 @default.
- W2476889254 countsByYear W24768892542019 @default.
- W2476889254 countsByYear W24768892542020 @default.
- W2476889254 countsByYear W24768892542021 @default.