Matches in SemOpenAlex for { <https://semopenalex.org/work/W2476973497> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2476973497 abstract "Twitter is one of the most popular social network sites on the Internet to share opinions and knowledge extensively. Many advertisers use these Tweets to collect some features and attributes of Tweeters to target specific groups of highly engaged people. Gender detection is a sub-field of sentiment analysis for extracting and predicting the gender of a Tweet author. In this paper, we aim to investigate the gender of Tweet authors using different classification mining techniques on Arabic language, such as Naïve Bayes (NB), Support vector machine (SVM), Naïve Bayes Multinomial (NBM), J48 decision tree, KNN. The results show that the NBM, SVM, and J48 classifiers can achieve accuracy above to 98%, by adding names of Tweet author as a feature. The results also show that the preprocessing approach has negative effect on the accuracy of gender detection. In nutshell, this study shows that the ability of using machine learning classifiers in detecting the gender of Arabic Tweet author." @default.
- W2476973497 created "2016-08-23" @default.
- W2476973497 creator A5017551519 @default.
- W2476973497 creator A5020580038 @default.
- W2476973497 date "2016-01-01" @default.
- W2476973497 modified "2023-09-26" @default.
- W2476973497 title "Investigating the Use of Machine Learning Algorithms in Detecting Gender of the Arabic Tweet Author" @default.
- W2476973497 cites W1530117508 @default.
- W2476973497 cites W1534466353 @default.
- W2476973497 cites W2005422315 @default.
- W2476973497 cites W2017729405 @default.
- W2476973497 cites W2025403586 @default.
- W2476973497 cites W2037532099 @default.
- W2476973497 cites W2095000586 @default.
- W2476973497 cites W2154819126 @default.
- W2476973497 cites W2251409655 @default.
- W2476973497 cites W2251812186 @default.
- W2476973497 cites W2284070151 @default.
- W2476973497 cites W2396869395 @default.
- W2476973497 cites W2979469769 @default.
- W2476973497 cites W9292421 @default.
- W2476973497 cites W2565497093 @default.
- W2476973497 doi "https://doi.org/10.14569/ijacsa.2016.070746" @default.
- W2476973497 hasPublicationYear "2016" @default.
- W2476973497 type Work @default.
- W2476973497 sameAs 2476973497 @default.
- W2476973497 citedByCount "8" @default.
- W2476973497 countsByYear W24769734972018 @default.
- W2476973497 countsByYear W24769734972019 @default.
- W2476973497 countsByYear W24769734972020 @default.
- W2476973497 countsByYear W24769734972021 @default.
- W2476973497 countsByYear W24769734972022 @default.
- W2476973497 crossrefType "journal-article" @default.
- W2476973497 hasAuthorship W2476973497A5017551519 @default.
- W2476973497 hasAuthorship W2476973497A5020580038 @default.
- W2476973497 hasBestOaLocation W24769734971 @default.
- W2476973497 hasConcept C119857082 @default.
- W2476973497 hasConcept C12267149 @default.
- W2476973497 hasConcept C138885662 @default.
- W2476973497 hasConcept C154945302 @default.
- W2476973497 hasConcept C202444582 @default.
- W2476973497 hasConcept C204321447 @default.
- W2476973497 hasConcept C33724603 @default.
- W2476973497 hasConcept C33923547 @default.
- W2476973497 hasConcept C34736171 @default.
- W2476973497 hasConcept C41008148 @default.
- W2476973497 hasConcept C41895202 @default.
- W2476973497 hasConcept C52001869 @default.
- W2476973497 hasConcept C52003472 @default.
- W2476973497 hasConcept C66402592 @default.
- W2476973497 hasConcept C84525736 @default.
- W2476973497 hasConcept C96455323 @default.
- W2476973497 hasConcept C9652623 @default.
- W2476973497 hasConceptScore W2476973497C119857082 @default.
- W2476973497 hasConceptScore W2476973497C12267149 @default.
- W2476973497 hasConceptScore W2476973497C138885662 @default.
- W2476973497 hasConceptScore W2476973497C154945302 @default.
- W2476973497 hasConceptScore W2476973497C202444582 @default.
- W2476973497 hasConceptScore W2476973497C204321447 @default.
- W2476973497 hasConceptScore W2476973497C33724603 @default.
- W2476973497 hasConceptScore W2476973497C33923547 @default.
- W2476973497 hasConceptScore W2476973497C34736171 @default.
- W2476973497 hasConceptScore W2476973497C41008148 @default.
- W2476973497 hasConceptScore W2476973497C41895202 @default.
- W2476973497 hasConceptScore W2476973497C52001869 @default.
- W2476973497 hasConceptScore W2476973497C52003472 @default.
- W2476973497 hasConceptScore W2476973497C66402592 @default.
- W2476973497 hasConceptScore W2476973497C84525736 @default.
- W2476973497 hasConceptScore W2476973497C96455323 @default.
- W2476973497 hasConceptScore W2476973497C9652623 @default.
- W2476973497 hasIssue "7" @default.
- W2476973497 hasLocation W24769734971 @default.
- W2476973497 hasOpenAccess W2476973497 @default.
- W2476973497 hasPrimaryLocation W24769734971 @default.
- W2476973497 hasRelatedWork W2183404840 @default.
- W2476973497 hasRelatedWork W2553238562 @default.
- W2476973497 hasRelatedWork W2902661814 @default.
- W2476973497 hasRelatedWork W2997416493 @default.
- W2476973497 hasRelatedWork W3127425528 @default.
- W2476973497 hasRelatedWork W3153584103 @default.
- W2476973497 hasRelatedWork W3185179407 @default.
- W2476973497 hasRelatedWork W3216831783 @default.
- W2476973497 hasRelatedWork W4312632137 @default.
- W2476973497 hasRelatedWork W3208721050 @default.
- W2476973497 hasVolume "7" @default.
- W2476973497 isParatext "false" @default.
- W2476973497 isRetracted "false" @default.
- W2476973497 magId "2476973497" @default.
- W2476973497 workType "article" @default.