Matches in SemOpenAlex for { <https://semopenalex.org/work/W2477079605> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2477079605 abstract "In this paper we present an effective and innovative way of classifying videos into different genres based on Hidden Markov Model (HMM) thereby facilitating subsequent analysis like video indexing, retrieval and so on. In particular, this work focuses on weighting Multiple Features and also on the challenging task of fusion technique at two different levels. The multiple features are used based on the observation that no single feature can provide the necessary discriminative information to better characterize the given video content in different aspects for distinguishing large video collections. Hence, the features such as 3D-color Histogram, Wavelet-HOG, and Motion are extracted from each video and a separate HMM is trained for each feature of video class. All the classifiers are grouped into sections such that each section contains classifiers with different features of the same genre. These features are evaluated in terms of weights based on Fuzzy Comprehensive Evaluation (FCE) technique for finding the degree of use of each feature in identifying the class. For classification, Double Fusion strategy is applied in terms of Intra section fusion and Inter section fusion methods. Intra section Fusion i.e. weighted-sum method is applied at the outputs of classifiers within the section of each genre. These weights represent the relative importance which is assigned to each feature vector in finding that particular class. Then an Inter section fusion i.e. Arg-Max method is applied to fuse the scores of all sections to make final decision. We tested our scheme on video database having videos such as Sports, Cartoons, Documentaries and News and the results are compared with other methods. The results show that multiple features, double fusion and also the use of fuzzy logic enhance video classification performance in terms of Accuracy Rate (AR) and Error Rate (ER)." @default.
- W2477079605 created "2016-08-23" @default.
- W2477079605 creator A5042984016 @default.
- W2477079605 creator A5047915734 @default.
- W2477079605 creator A5052951839 @default.
- W2477079605 date "2015-12-25" @default.
- W2477079605 modified "2023-10-16" @default.
- W2477079605 title "Weighting Multiple Features and Double Fusion Method for HMM Based Video Classification" @default.
- W2477079605 cites W1945772893 @default.
- W2477079605 cites W1988241972 @default.
- W2477079605 cites W1993625798 @default.
- W2477079605 cites W2008105618 @default.
- W2477079605 cites W2016648380 @default.
- W2477079605 cites W2083498763 @default.
- W2477079605 cites W2089344344 @default.
- W2477079605 cites W2105740906 @default.
- W2477079605 cites W2125838338 @default.
- W2477079605 cites W2161107932 @default.
- W2477079605 doi "https://doi.org/10.1007/978-81-322-2728-1_68" @default.
- W2477079605 hasPublicationYear "2015" @default.
- W2477079605 type Work @default.
- W2477079605 sameAs 2477079605 @default.
- W2477079605 citedByCount "1" @default.
- W2477079605 countsByYear W24770796052017 @default.
- W2477079605 crossrefType "book-chapter" @default.
- W2477079605 hasAuthorship W2477079605A5042984016 @default.
- W2477079605 hasAuthorship W2477079605A5047915734 @default.
- W2477079605 hasAuthorship W2477079605A5052951839 @default.
- W2477079605 hasConcept C115961682 @default.
- W2477079605 hasConcept C12267149 @default.
- W2477079605 hasConcept C126838900 @default.
- W2477079605 hasConcept C138885662 @default.
- W2477079605 hasConcept C153180895 @default.
- W2477079605 hasConcept C154945302 @default.
- W2477079605 hasConcept C183115368 @default.
- W2477079605 hasConcept C23224414 @default.
- W2477079605 hasConcept C2776401178 @default.
- W2477079605 hasConcept C2777212361 @default.
- W2477079605 hasConcept C41008148 @default.
- W2477079605 hasConcept C41895202 @default.
- W2477079605 hasConcept C53533937 @default.
- W2477079605 hasConcept C71924100 @default.
- W2477079605 hasConcept C75165309 @default.
- W2477079605 hasConcept C97931131 @default.
- W2477079605 hasConceptScore W2477079605C115961682 @default.
- W2477079605 hasConceptScore W2477079605C12267149 @default.
- W2477079605 hasConceptScore W2477079605C126838900 @default.
- W2477079605 hasConceptScore W2477079605C138885662 @default.
- W2477079605 hasConceptScore W2477079605C153180895 @default.
- W2477079605 hasConceptScore W2477079605C154945302 @default.
- W2477079605 hasConceptScore W2477079605C183115368 @default.
- W2477079605 hasConceptScore W2477079605C23224414 @default.
- W2477079605 hasConceptScore W2477079605C2776401178 @default.
- W2477079605 hasConceptScore W2477079605C2777212361 @default.
- W2477079605 hasConceptScore W2477079605C41008148 @default.
- W2477079605 hasConceptScore W2477079605C41895202 @default.
- W2477079605 hasConceptScore W2477079605C53533937 @default.
- W2477079605 hasConceptScore W2477079605C71924100 @default.
- W2477079605 hasConceptScore W2477079605C75165309 @default.
- W2477079605 hasConceptScore W2477079605C97931131 @default.
- W2477079605 hasLocation W24770796051 @default.
- W2477079605 hasOpenAccess W2477079605 @default.
- W2477079605 hasPrimaryLocation W24770796051 @default.
- W2477079605 hasRelatedWork W1949924346 @default.
- W2477079605 hasRelatedWork W2015762358 @default.
- W2477079605 hasRelatedWork W2018800623 @default.
- W2477079605 hasRelatedWork W2076424778 @default.
- W2477079605 hasRelatedWork W2096360659 @default.
- W2477079605 hasRelatedWork W2110364349 @default.
- W2477079605 hasRelatedWork W2130567847 @default.
- W2477079605 hasRelatedWork W2165642419 @default.
- W2477079605 hasRelatedWork W2485662927 @default.
- W2477079605 hasRelatedWork W2513750347 @default.
- W2477079605 hasRelatedWork W2580011864 @default.
- W2477079605 hasRelatedWork W2750711789 @default.
- W2477079605 hasRelatedWork W2762026055 @default.
- W2477079605 hasRelatedWork W2762642065 @default.
- W2477079605 hasRelatedWork W2793619457 @default.
- W2477079605 hasRelatedWork W2795041432 @default.
- W2477079605 hasRelatedWork W2896918494 @default.
- W2477079605 hasRelatedWork W2966401131 @default.
- W2477079605 hasRelatedWork W2998455891 @default.
- W2477079605 hasRelatedWork W2965587893 @default.
- W2477079605 isParatext "false" @default.
- W2477079605 isRetracted "false" @default.
- W2477079605 magId "2477079605" @default.
- W2477079605 workType "book-chapter" @default.