Matches in SemOpenAlex for { <https://semopenalex.org/work/W2477461444> ?p ?o ?g. }
- W2477461444 endingPage "462" @default.
- W2477461444 startingPage "438" @default.
- W2477461444 abstract "Vision is one of the most powerful sensing modalities. In robotics, machine vision techniques have beenextensively used in applications such as manufacturing, visual servoing [7, 30], navigation [9, 26, 50, 51],and robotic mapping [58]. Here the main problem is how to reconstruct both the pose of the cameraand the three-dimensional (3-D) structure of the scene. This reconstruction inevitably requires a goodunderstanding of the geometry of image formation and 3-D reconstruction. In this chapter, we providea survey of the basic theory and some recent advances in the geometric aspects of the reconstructionproblem. Specifically, we introduce the theory and algorithms for reconstruction from two views (e.g.,see [29, 31, 33, 40, 67]), multiple views (e.g., see [10, 12, 23, 37, 38, 40]), and a single view (e.g., see[1, 3, 19, 25, 28, 70, 73, 74]). Since this chapter can only provide a brief introduction to these topics,the reader is referred to the book [40] for a more comprehensive treatment. Without any knowledge ofthe environment, reconstruction of a scene requires multiple images. This is because a single imageis merely a 2-D projection of the 3-D world, for which the depth information is lost. When multipleimages are available from different known viewpoints, the 3-D location of every point in the scene can bedetermined uniquely by triangulation (or stereopsis). However, in many applications (especially those forrobot vision), the viewpoints are also unknown. Therefore, we need to recover both the scene structureand the camera poses. In computer vision literature, this is referred to as the “structure from motion”(SFM) problem. To solve this problem, the theory of multiple-view geometry has been developed (e.g., see[10, 12, 23, 33, 37, 38, 40, 67]). In this chapter, we introduce the basic theory of multiple-view geometryand show how it can be used to develop algorithms for reconstruction purposes. Specifically, for the twoview case, we introduce in Section 22.2 the epipolar constraint and the eight-point structure from motionalgorithm [29, 33, 40]. For the multiple-view case, we introduce in Section 22.3 the rank conditions onmultiple-view matrix [27, 37, 38, 40] and a multiple-view factorization algorithm [37, 40]." @default.
- W2477461444 created "2016-08-23" @default.
- W2477461444 creator A5057366605 @default.
- W2477461444 creator A5062841020 @default.
- W2477461444 date "2018-10-03" @default.
- W2477461444 modified "2023-09-23" @default.
- W2477461444 title "A Survey of Geometric Vision" @default.
- W2477461444 cites W1484422613 @default.
- W2477461444 cites W1504979201 @default.
- W2477461444 cites W1521667143 @default.
- W2477461444 cites W1540761374 @default.
- W2477461444 cites W1544725851 @default.
- W2477461444 cites W1548596190 @default.
- W2477461444 cites W1567583906 @default.
- W2477461444 cites W1586173270 @default.
- W2477461444 cites W1588329489 @default.
- W2477461444 cites W1590739438 @default.
- W2477461444 cites W1596204588 @default.
- W2477461444 cites W1597413698 @default.
- W2477461444 cites W1597739853 @default.
- W2477461444 cites W1597815530 @default.
- W2477461444 cites W1598118858 @default.
- W2477461444 cites W1598123022 @default.
- W2477461444 cites W1655654231 @default.
- W2477461444 cites W1765621338 @default.
- W2477461444 cites W1848858524 @default.
- W2477461444 cites W1882188564 @default.
- W2477461444 cites W1973016074 @default.
- W2477461444 cites W1984190176 @default.
- W2477461444 cites W2002010034 @default.
- W2477461444 cites W2013036250 @default.
- W2477461444 cites W2013599012 @default.
- W2477461444 cites W2029528398 @default.
- W2477461444 cites W2033819227 @default.
- W2477461444 cites W2055753960 @default.
- W2477461444 cites W2067424579 @default.
- W2477461444 cites W2069201720 @default.
- W2477461444 cites W2085261163 @default.
- W2477461444 cites W2096330980 @default.
- W2477461444 cites W2096355125 @default.
- W2477461444 cites W2103471724 @default.
- W2477461444 cites W2104586706 @default.
- W2477461444 cites W2106034964 @default.
- W2477461444 cites W2108429620 @default.
- W2477461444 cites W2109407206 @default.
- W2477461444 cites W2109821910 @default.
- W2477461444 cites W2111308925 @default.
- W2477461444 cites W2112364359 @default.
- W2477461444 cites W2113405866 @default.
- W2477461444 cites W2117083552 @default.
- W2477461444 cites W2118877769 @default.
- W2477461444 cites W2130103520 @default.
- W2477461444 cites W2138835141 @default.
- W2477461444 cites W2142876261 @default.
- W2477461444 cites W2145023731 @default.
- W2477461444 cites W2149749462 @default.
- W2477461444 cites W2150550075 @default.
- W2477461444 cites W2151812852 @default.
- W2477461444 cites W2152128146 @default.
- W2477461444 cites W2155880278 @default.
- W2477461444 cites W2157956755 @default.
- W2477461444 cites W2164655570 @default.
- W2477461444 cites W2166607322 @default.
- W2477461444 cites W2167501464 @default.
- W2477461444 cites W2167667767 @default.
- W2477461444 cites W2169722588 @default.
- W2477461444 cites W2911709767 @default.
- W2477461444 cites W2999755453 @default.
- W2477461444 cites W2799545702 @default.
- W2477461444 cites W3203954530 @default.
- W2477461444 doi "https://doi.org/10.1201/9781315220352-25" @default.
- W2477461444 hasPublicationYear "2018" @default.
- W2477461444 type Work @default.
- W2477461444 sameAs 2477461444 @default.
- W2477461444 citedByCount "0" @default.
- W2477461444 crossrefType "journal-article" @default.
- W2477461444 hasAuthorship W2477461444A5057366605 @default.
- W2477461444 hasAuthorship W2477461444A5062841020 @default.
- W2477461444 hasConcept C109950114 @default.
- W2477461444 hasConcept C11413529 @default.
- W2477461444 hasConcept C115961682 @default.
- W2477461444 hasConcept C135981907 @default.
- W2477461444 hasConcept C142362112 @default.
- W2477461444 hasConcept C153349607 @default.
- W2477461444 hasConcept C154945302 @default.
- W2477461444 hasConcept C23379248 @default.
- W2477461444 hasConcept C2524010 @default.
- W2477461444 hasConcept C2776035091 @default.
- W2477461444 hasConcept C28719098 @default.
- W2477461444 hasConcept C31972630 @default.
- W2477461444 hasConcept C33923547 @default.
- W2477461444 hasConcept C34413123 @default.
- W2477461444 hasConcept C41008148 @default.
- W2477461444 hasConcept C5339829 @default.
- W2477461444 hasConcept C57493831 @default.
- W2477461444 hasConcept C68537008 @default.
- W2477461444 hasConcept C90509273 @default.
- W2477461444 hasConceptScore W2477461444C109950114 @default.