Matches in SemOpenAlex for { <https://semopenalex.org/work/W2478549658> ?p ?o ?g. }
- W2478549658 endingPage "1221" @default.
- W2478549658 startingPage "1210" @default.
- W2478549658 abstract "Bio-hydrogenated diesel (BHD) produced from two different raw materials—palm oil fatty acid distillate and fatty acid methyl ester—was compared in terms of environmental impacts using the life cycle assessment (LCA) technique with the SimaPro 7.3 software. The energy consumption, greenhouse gas emission, and environmental impacts reported in unit points (Pt.) were assessed using the Eco-indicator 95, IPCC 2007, and CML 2 Baseline 2000 methodologies, respectively. The functional unit was 1 kg of biofuel product. The system boundary defined included three main processes in the bio-hydrogenated diesel production phase—catalytic hydroprocessing, separation, and upgrading. The results indicated that the energy consumption of bio-hydrogenated diesel production from palm oil fatty acid distillate was 1.26 times (or 9.69 × 10−3 MJ higher) that of the bio-hydrogenated diesel production from fatty acid methyl ester. On the other hand, the greenhouse gas emission from bio-hydrogenated diesel production from palm oil fatty acid distillate was 2.29 times lower than that from fatty acid methyl ester due to the palm trees absorption of CO2 for photosynthesis being greater than the amount released into the atmosphere during the oil palm cultivation stage. The major contributor was crude palm oil as a feedstock to produce either palm oil fatty acid distillate (physical refining) or fatty acid methyl ester (transesterification), which were about 93% and 84% of the total energy consumption and greenhouse gas emission, respectively. The results of environmental impacts showed that the bio-hydrogenated diesel production from palm oil fatty acid distillate was 1.37 times (2.05 × 10−12 Pt) greater than that from fatty acid methyl ester. Consumption of palm oil fatty acid distillate and fatty acid methyl ester in both processes made the largest contribution to most environmental impacts (99% of the total impact score was from both processes). The main impacts of both bio-hydrogenated diesel production from palm oil fatty acid distillate and fatty acid methyl ester were the terrestrial ecotoxicity potential, fresh water aquatic ecotoxicity potential, and marine aquatic ecotoxicity potential. An essential factor which caused these impacts was the use of crude palm oil during the production of palm oil fatty acid distillate and fatty acid methyl ester. Therefore, fatty acid methyl ester was found to be a suitable raw material for bio-hydrogenated diesel production based on the economic evaluation and the lower environmental impacts during the production stage. This present work highlights the benefit of by-products as feedstock for alternative fuel production in order to increase the by-product marketing value." @default.
- W2478549658 created "2016-08-23" @default.
- W2478549658 creator A5017805906 @default.
- W2478549658 creator A5030284068 @default.
- W2478549658 creator A5030854595 @default.
- W2478549658 creator A5034735644 @default.
- W2478549658 creator A5035337754 @default.
- W2478549658 creator A5035848706 @default.
- W2478549658 creator A5069476813 @default.
- W2478549658 creator A5077814283 @default.
- W2478549658 date "2017-01-01" @default.
- W2478549658 modified "2023-10-11" @default.
- W2478549658 title "Evaluating the environmental impacts of bio-hydrogenated diesel production from palm oil and fatty acid methyl ester through life cycle assessment" @default.
- W2478549658 cites W1082756362 @default.
- W2478549658 cites W1813815122 @default.
- W2478549658 cites W1962411505 @default.
- W2478549658 cites W1969174731 @default.
- W2478549658 cites W1976595646 @default.
- W2478549658 cites W1980920164 @default.
- W2478549658 cites W1988677377 @default.
- W2478549658 cites W2014131350 @default.
- W2478549658 cites W2031138264 @default.
- W2478549658 cites W2038733439 @default.
- W2478549658 cites W2039012038 @default.
- W2478549658 cites W2041464327 @default.
- W2478549658 cites W2041695486 @default.
- W2478549658 cites W2042118813 @default.
- W2478549658 cites W2047959032 @default.
- W2478549658 cites W2051926240 @default.
- W2478549658 cites W2057800981 @default.
- W2478549658 cites W2063453513 @default.
- W2478549658 cites W2068871684 @default.
- W2478549658 cites W2079362643 @default.
- W2478549658 cites W2099873719 @default.
- W2478549658 cites W2112477193 @default.
- W2478549658 cites W2141862292 @default.
- W2478549658 cites W2145881478 @default.
- W2478549658 cites W2155971831 @default.
- W2478549658 cites W2180941601 @default.
- W2478549658 cites W2181815272 @default.
- W2478549658 cites W2317540946 @default.
- W2478549658 cites W2345904175 @default.
- W2478549658 cites W2461014339 @default.
- W2478549658 doi "https://doi.org/10.1016/j.jclepro.2016.07.128" @default.
- W2478549658 hasPublicationYear "2017" @default.
- W2478549658 type Work @default.
- W2478549658 sameAs 2478549658 @default.
- W2478549658 citedByCount "39" @default.
- W2478549658 countsByYear W24785496582017 @default.
- W2478549658 countsByYear W24785496582018 @default.
- W2478549658 countsByYear W24785496582019 @default.
- W2478549658 countsByYear W24785496582020 @default.
- W2478549658 countsByYear W24785496582021 @default.
- W2478549658 countsByYear W24785496582022 @default.
- W2478549658 countsByYear W24785496582023 @default.
- W2478549658 crossrefType "journal-article" @default.
- W2478549658 hasAuthorship W2478549658A5017805906 @default.
- W2478549658 hasAuthorship W2478549658A5030284068 @default.
- W2478549658 hasAuthorship W2478549658A5030854595 @default.
- W2478549658 hasAuthorship W2478549658A5034735644 @default.
- W2478549658 hasAuthorship W2478549658A5035337754 @default.
- W2478549658 hasAuthorship W2478549658A5035848706 @default.
- W2478549658 hasAuthorship W2478549658A5069476813 @default.
- W2478549658 hasAuthorship W2478549658A5077814283 @default.
- W2478549658 hasConcept C127413603 @default.
- W2478549658 hasConcept C138171918 @default.
- W2478549658 hasConcept C139719470 @default.
- W2478549658 hasConcept C161790260 @default.
- W2478549658 hasConcept C162324750 @default.
- W2478549658 hasConcept C175461058 @default.
- W2478549658 hasConcept C178790620 @default.
- W2478549658 hasConcept C185592680 @default.
- W2478549658 hasConcept C204030448 @default.
- W2478549658 hasConcept C206139338 @default.
- W2478549658 hasConcept C2778348673 @default.
- W2478549658 hasConcept C2778706760 @default.
- W2478549658 hasConcept C2780209386 @default.
- W2478549658 hasConcept C31903555 @default.
- W2478549658 hasConcept C39432304 @default.
- W2478549658 hasConcept C528095902 @default.
- W2478549658 hasConcept C52896960 @default.
- W2478549658 hasConcept C53991642 @default.
- W2478549658 hasConcept C543025807 @default.
- W2478549658 hasConcept C548081761 @default.
- W2478549658 hasConcept C66910140 @default.
- W2478549658 hasConceptScore W2478549658C127413603 @default.
- W2478549658 hasConceptScore W2478549658C138171918 @default.
- W2478549658 hasConceptScore W2478549658C139719470 @default.
- W2478549658 hasConceptScore W2478549658C161790260 @default.
- W2478549658 hasConceptScore W2478549658C162324750 @default.
- W2478549658 hasConceptScore W2478549658C175461058 @default.
- W2478549658 hasConceptScore W2478549658C178790620 @default.
- W2478549658 hasConceptScore W2478549658C185592680 @default.
- W2478549658 hasConceptScore W2478549658C204030448 @default.
- W2478549658 hasConceptScore W2478549658C206139338 @default.
- W2478549658 hasConceptScore W2478549658C2778348673 @default.
- W2478549658 hasConceptScore W2478549658C2778706760 @default.
- W2478549658 hasConceptScore W2478549658C2780209386 @default.