Matches in SemOpenAlex for { <https://semopenalex.org/work/W2479226904> ?p ?o ?g. }
- W2479226904 abstract "OF DISSERTATION PREFERENCES: OPTIMIZATION, IMPORTANCE LEARNING AND STRATEGIC BEHAVIORS Preferences are fundamental to decision making and play an important role in artificial intelligence. Our research focuses on three group of problems based on the preference formalism Answer Set Optimization (ASO) [27]: preference aggregation problems such as computing optimal (near optimal) solutions, strategic behaviors in preference representation, and learning ranks (weights) for preferences. In the first group of problems, of interest are optimal outcomes, that is, outcomes that are optimal with respect to the preorder defined by the preference rules. In this work, we consider computational problems concerning optimal outcomes. We propose, implement and study methods to compute an optimal outcome; to compute another optimal outcome once the first one is found; to compute an optimal outcome that is similar to (or, dissimilar from) a given candidate outcome; and to compute a set of optimal answer sets each significantly different from the others. For the decision version of several of these problems we establish their computational complexity. For the second topic, the strategic behaviors such as manipulation and bribery have received much attention from the social choice community. We study these concepts for preference formalisms that identify a set of optimal outcomes rather than a single winning outcome, the case common to social choice. Such preference formalisms are of interest in the context of combinatorial domains, where preference representations are only approximations to true preferences, and seeking a single optimal outcome runs a risk of missing the one which is optimal with respect to the actual preferences. In this work, we assume that preferences may be ranked (differ in importance), and we use the Pareto principle adjusted to the case of ranked preferences as the preference aggregation rule. For two important classes of preferences, representing the extreme ends of the spectrum, we provide characterizations of situations when manipulation and bribery is possible, and establish the complexity of the problem to decide that. Finally, we study the problem of learning the importance of individual preferences in preference profiles aggregated by the ranked Pareto rule or positional scoring rules. We provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decided all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples is NP-hard. We obtain similar results for the case of weighted profiles." @default.
- W2479226904 created "2016-08-23" @default.
- W2479226904 creator A5083968726 @default.
- W2479226904 date "2016-01-01" @default.
- W2479226904 modified "2023-09-23" @default.
- W2479226904 title "PREFERENCES: OPTIMIZATION, IMPORTANCE LEARNING AND STRATEGIC BEHAVIORS" @default.
- W2479226904 cites W102109174 @default.
- W2479226904 cites W108432896 @default.
- W2479226904 cites W11013527 @default.
- W2479226904 cites W148856602 @default.
- W2479226904 cites W1494273003 @default.
- W2479226904 cites W1495878145 @default.
- W2479226904 cites W1496830905 @default.
- W2479226904 cites W14982402 @default.
- W2479226904 cites W1505903937 @default.
- W2479226904 cites W1506737301 @default.
- W2479226904 cites W1514489656 @default.
- W2479226904 cites W1515481220 @default.
- W2479226904 cites W1517333122 @default.
- W2479226904 cites W1525934073 @default.
- W2479226904 cites W1531933097 @default.
- W2479226904 cites W1532399371 @default.
- W2479226904 cites W1535270096 @default.
- W2479226904 cites W1537362768 @default.
- W2479226904 cites W1545836098 @default.
- W2479226904 cites W1551818730 @default.
- W2479226904 cites W155845106 @default.
- W2479226904 cites W1565050486 @default.
- W2479226904 cites W1575987491 @default.
- W2479226904 cites W1580922218 @default.
- W2479226904 cites W1588205897 @default.
- W2479226904 cites W1639901403 @default.
- W2479226904 cites W1652376537 @default.
- W2479226904 cites W1672891595 @default.
- W2479226904 cites W1674952968 @default.
- W2479226904 cites W1702098928 @default.
- W2479226904 cites W173299344 @default.
- W2479226904 cites W1792416988 @default.
- W2479226904 cites W1972375916 @default.
- W2479226904 cites W1976055110 @default.
- W2479226904 cites W1979128791 @default.
- W2479226904 cites W1984529395 @default.
- W2479226904 cites W1986409722 @default.
- W2479226904 cites W1987216876 @default.
- W2479226904 cites W1988793717 @default.
- W2479226904 cites W2003296459 @default.
- W2479226904 cites W2011124182 @default.
- W2479226904 cites W2020112047 @default.
- W2479226904 cites W2025738350 @default.
- W2479226904 cites W2036910311 @default.
- W2479226904 cites W2038431270 @default.
- W2479226904 cites W2043715088 @default.
- W2479226904 cites W2060522636 @default.
- W2479226904 cites W2074997607 @default.
- W2479226904 cites W2078300867 @default.
- W2479226904 cites W2084701149 @default.
- W2479226904 cites W2087432892 @default.
- W2479226904 cites W2098382610 @default.
- W2479226904 cites W2100229481 @default.
- W2479226904 cites W2101817210 @default.
- W2479226904 cites W2102705755 @default.
- W2479226904 cites W2106614716 @default.
- W2479226904 cites W2108178172 @default.
- W2479226904 cites W2109110363 @default.
- W2479226904 cites W2110362180 @default.
- W2479226904 cites W2114660707 @default.
- W2479226904 cites W2118092075 @default.
- W2479226904 cites W2123942784 @default.
- W2479226904 cites W2124562173 @default.
- W2479226904 cites W2126893170 @default.
- W2479226904 cites W2127842795 @default.
- W2479226904 cites W2129678216 @default.
- W2479226904 cites W2134883545 @default.
- W2479226904 cites W2152131859 @default.
- W2479226904 cites W2155378065 @default.
- W2479226904 cites W2161392628 @default.
- W2479226904 cites W2171195256 @default.
- W2479226904 cites W2171945484 @default.
- W2479226904 cites W2266401050 @default.
- W2479226904 cites W2296722486 @default.
- W2479226904 cites W2402826403 @default.
- W2479226904 cites W24918992 @default.
- W2479226904 cites W2724919050 @default.
- W2479226904 cites W2913352891 @default.
- W2479226904 cites W2950731953 @default.
- W2479226904 cites W2950749880 @default.
- W2479226904 cites W2950918115 @default.
- W2479226904 cites W2951571114 @default.
- W2479226904 cites W3136440969 @default.
- W2479226904 cites W33459315 @default.
- W2479226904 cites W347679055 @default.
- W2479226904 cites W48425311 @default.
- W2479226904 cites W807789281 @default.
- W2479226904 cites W1602012035 @default.
- W2479226904 cites W163449460 @default.
- W2479226904 doi "https://doi.org/10.13023/etd.2016.197" @default.
- W2479226904 hasPublicationYear "2016" @default.
- W2479226904 type Work @default.
- W2479226904 sameAs 2479226904 @default.
- W2479226904 citedByCount "0" @default.