Matches in SemOpenAlex for { <https://semopenalex.org/work/W2479449882> ?p ?o ?g. }
- W2479449882 endingPage "574" @default.
- W2479449882 startingPage "574" @default.
- W2479449882 abstract "In order to investigate how artificial neural networks (ANNs) have been applied for partial discharge (PD) pattern recognition, this paper reviews recent progress made on ANN development for PD classification by a literature survey. Contributions from several authors have been presented and discussed. High recognition rate has been recorded for several PD faults, but there are still many factors that hinder correct recognition of PD by the ANN, such as high-amplitude noise or wide spectral content typical from industrial environments, trial and error approaches in determining an optimum ANN, multiple PD sources acting simultaneously, lack of comprehensive and up to date databank of PD faults, and the appropriate selection of the characteristics that allow a correct recognition of the type of source which are currently being addressed by researchers. Several suggestions for improvement are proposed by the authors include: (1) determining the optimum weights in training the ANN; (2) using PD data captured over long stressing period in training the ANN; (3) ANN recognizing different PD degradation levels; (4) using the same resolution sizes of the PD patterns when training and testing the ANN with different PD dataset; (5) understanding the characteristics of multiple concurrent PD faults and effectively recognizing them; and (6) developing techniques in order to shorten the training time for the ANN as applied for PD recognition Finally, this paper critically assesses the suitability of ANNs for both online and offline PD detections outlining the advantages to the practitioners in the field. It is possible for the ANNs to determine the stage of degradation of the PD, thereby giving an indication of the seriousness of the fault." @default.
- W2479449882 created "2016-08-23" @default.
- W2479449882 creator A5018659221 @default.
- W2479449882 creator A5024528936 @default.
- W2479449882 creator A5040603956 @default.
- W2479449882 creator A5044087954 @default.
- W2479449882 creator A5053921091 @default.
- W2479449882 creator A5090831569 @default.
- W2479449882 creator A5091877769 @default.
- W2479449882 date "2016-07-25" @default.
- W2479449882 modified "2023-10-03" @default.
- W2479449882 title "Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions" @default.
- W2479449882 cites W1088187922 @default.
- W2479449882 cites W1969188209 @default.
- W2479449882 cites W1974705751 @default.
- W2479449882 cites W1987228024 @default.
- W2479449882 cites W2000655115 @default.
- W2479449882 cites W2002610002 @default.
- W2479449882 cites W2008906538 @default.
- W2479449882 cites W2013773555 @default.
- W2479449882 cites W2031707528 @default.
- W2479449882 cites W2045186954 @default.
- W2479449882 cites W2046794274 @default.
- W2479449882 cites W2054093043 @default.
- W2479449882 cites W2054293744 @default.
- W2479449882 cites W2058620903 @default.
- W2479449882 cites W2076608059 @default.
- W2479449882 cites W2082981740 @default.
- W2479449882 cites W2101260915 @default.
- W2479449882 cites W2104299962 @default.
- W2479449882 cites W2104662049 @default.
- W2479449882 cites W2108217496 @default.
- W2479449882 cites W2110608620 @default.
- W2479449882 cites W2111077104 @default.
- W2479449882 cites W2122295739 @default.
- W2479449882 cites W2124299183 @default.
- W2479449882 cites W2129562842 @default.
- W2479449882 cites W2131931322 @default.
- W2479449882 cites W2132549764 @default.
- W2479449882 cites W2135429009 @default.
- W2479449882 cites W2140942952 @default.
- W2479449882 cites W2147341651 @default.
- W2479449882 cites W2157540743 @default.
- W2479449882 cites W2171374651 @default.
- W2479449882 cites W2280498816 @default.
- W2479449882 cites W2295071068 @default.
- W2479449882 cites W2475042792 @default.
- W2479449882 cites W286444708 @default.
- W2479449882 cites W4237900133 @default.
- W2479449882 doi "https://doi.org/10.3390/en9080574" @default.
- W2479449882 hasPublicationYear "2016" @default.
- W2479449882 type Work @default.
- W2479449882 sameAs 2479449882 @default.
- W2479449882 citedByCount "42" @default.
- W2479449882 countsByYear W24794498822017 @default.
- W2479449882 countsByYear W24794498822018 @default.
- W2479449882 countsByYear W24794498822019 @default.
- W2479449882 countsByYear W24794498822020 @default.
- W2479449882 countsByYear W24794498822021 @default.
- W2479449882 countsByYear W24794498822022 @default.
- W2479449882 countsByYear W24794498822023 @default.
- W2479449882 crossrefType "journal-article" @default.
- W2479449882 hasAuthorship W2479449882A5018659221 @default.
- W2479449882 hasAuthorship W2479449882A5024528936 @default.
- W2479449882 hasAuthorship W2479449882A5040603956 @default.
- W2479449882 hasAuthorship W2479449882A5044087954 @default.
- W2479449882 hasAuthorship W2479449882A5053921091 @default.
- W2479449882 hasAuthorship W2479449882A5090831569 @default.
- W2479449882 hasAuthorship W2479449882A5091877769 @default.
- W2479449882 hasBestOaLocation W24794498821 @default.
- W2479449882 hasConcept C119857082 @default.
- W2479449882 hasConcept C124101348 @default.
- W2479449882 hasConcept C153180895 @default.
- W2479449882 hasConcept C154945302 @default.
- W2479449882 hasConcept C202444582 @default.
- W2479449882 hasConcept C33923547 @default.
- W2479449882 hasConcept C41008148 @default.
- W2479449882 hasConcept C50644808 @default.
- W2479449882 hasConcept C9652623 @default.
- W2479449882 hasConceptScore W2479449882C119857082 @default.
- W2479449882 hasConceptScore W2479449882C124101348 @default.
- W2479449882 hasConceptScore W2479449882C153180895 @default.
- W2479449882 hasConceptScore W2479449882C154945302 @default.
- W2479449882 hasConceptScore W2479449882C202444582 @default.
- W2479449882 hasConceptScore W2479449882C33923547 @default.
- W2479449882 hasConceptScore W2479449882C41008148 @default.
- W2479449882 hasConceptScore W2479449882C50644808 @default.
- W2479449882 hasConceptScore W2479449882C9652623 @default.
- W2479449882 hasIssue "8" @default.
- W2479449882 hasLocation W24794498821 @default.
- W2479449882 hasLocation W24794498822 @default.
- W2479449882 hasLocation W24794498823 @default.
- W2479449882 hasLocation W24794498824 @default.
- W2479449882 hasLocation W24794498825 @default.
- W2479449882 hasLocation W24794498826 @default.
- W2479449882 hasLocation W24794498827 @default.
- W2479449882 hasLocation W24794498828 @default.
- W2479449882 hasOpenAccess W2479449882 @default.