Matches in SemOpenAlex for { <https://semopenalex.org/work/W2479792287> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W2479792287 endingPage "277" @default.
- W2479792287 startingPage "265" @default.
- W2479792287 abstract "The particle swarm optimization (PSO) algorithm is the second oldest algorithm after the ant colony optimization (ACO) algorithm which started a new algorithms family called swarm intelligence algorithms. In this chapter, we will provide an introduction to the PSO algorithm. We will present the original global version of the PSO algorithm in the pseudo-code form and its source-code in Matlab, and in C++ programming language. Also, we will briefly discuss the local version of the PSO algorithm. We will present two types of neighborhood (geometrical and social) which are used in the local version of the PSO algorithm. We will end this chapter by presenting a step-by-step numerical example of the global version of the PSO algorithm, which could help aid the understanding of potential readers and enable them to carry out their own implementation of the global version of the PSO algorithm in any programming language. Finally, the conclusion section will be shown." @default.
- W2479792287 created "2016-08-23" @default.
- W2479792287 creator A5024909557 @default.
- W2479792287 date "2020-08-25" @default.
- W2479792287 modified "2023-09-27" @default.
- W2479792287 title "Particle Swarm Optimization" @default.
- W2479792287 cites W16088600 @default.
- W2479792287 cites W2101377693 @default.
- W2479792287 cites W2297395784 @default.
- W2479792287 cites W2543580944 @default.
- W2479792287 doi "https://doi.org/10.1201/9780429422614-20" @default.
- W2479792287 hasPublicationYear "2020" @default.
- W2479792287 type Work @default.
- W2479792287 sameAs 2479792287 @default.
- W2479792287 citedByCount "0" @default.
- W2479792287 crossrefType "book-chapter" @default.
- W2479792287 hasAuthorship W2479792287A5024909557 @default.
- W2479792287 hasConcept C11413529 @default.
- W2479792287 hasConcept C18903297 @default.
- W2479792287 hasConcept C2778517922 @default.
- W2479792287 hasConcept C41008148 @default.
- W2479792287 hasConcept C85617194 @default.
- W2479792287 hasConcept C86803240 @default.
- W2479792287 hasConceptScore W2479792287C11413529 @default.
- W2479792287 hasConceptScore W2479792287C18903297 @default.
- W2479792287 hasConceptScore W2479792287C2778517922 @default.
- W2479792287 hasConceptScore W2479792287C41008148 @default.
- W2479792287 hasConceptScore W2479792287C85617194 @default.
- W2479792287 hasConceptScore W2479792287C86803240 @default.
- W2479792287 hasLocation W24797922871 @default.
- W2479792287 hasOpenAccess W2479792287 @default.
- W2479792287 hasPrimaryLocation W24797922871 @default.
- W2479792287 hasRelatedWork W1514436056 @default.
- W2479792287 hasRelatedWork W2028638224 @default.
- W2479792287 hasRelatedWork W2044365625 @default.
- W2479792287 hasRelatedWork W2100214067 @default.
- W2479792287 hasRelatedWork W2132113279 @default.
- W2479792287 hasRelatedWork W2334219043 @default.
- W2479792287 hasRelatedWork W2364793055 @default.
- W2479792287 hasRelatedWork W2389520185 @default.
- W2479792287 hasRelatedWork W2393462930 @default.
- W2479792287 hasRelatedWork W2511700582 @default.
- W2479792287 isParatext "false" @default.
- W2479792287 isRetracted "false" @default.
- W2479792287 magId "2479792287" @default.
- W2479792287 workType "book-chapter" @default.