Matches in SemOpenAlex for { <https://semopenalex.org/work/W2479915852> ?p ?o ?g. }
- W2479915852 endingPage "107" @default.
- W2479915852 startingPage "71" @default.
- W2479915852 abstract "Clustering evaluation plays an important role in unsupervised learning systems, as it is often necessary to automatically quantify the quality of generated cluster configurations. This is especially useful for comparing the performance of different clustering algorithms as well as determining the optimal number of clusters in clustering algorithms that do not estimate it internally. Many clustering quality indexes have been proposed over the years and different indexes are used in different contexts. There is no unifying protocol for clustering evaluation, so it is often unclear which quality index to use in which case. In this chapter, we review the existing clustering quality measures and evaluate them in the challenging context of high-dimensional data clustering. High-dimensional data is sparse and distances tend to concentrate, possibly affecting the applicability of various clustering quality indexes. We analyze the stability and discriminative power of a set of standard clustering quality measures with increasing data dimensionality. Our evaluation shows that the curse of dimensionality affects different clustering quality indexes in different ways and that some are to be preferred when determining clustering quality in many dimensions." @default.
- W2479915852 created "2016-08-23" @default.
- W2479915852 creator A5025192310 @default.
- W2479915852 creator A5057195145 @default.
- W2479915852 date "2016-01-01" @default.
- W2479915852 modified "2023-10-14" @default.
- W2479915852 title "Clustering Evaluation in High-Dimensional Data" @default.
- W2479915852 cites W135041538 @default.
- W2479915852 cites W1486213250 @default.
- W2479915852 cites W1491887076 @default.
- W2479915852 cites W1492553164 @default.
- W2479915852 cites W1523794535 @default.
- W2479915852 cites W1533303231 @default.
- W2479915852 cites W1536815328 @default.
- W2479915852 cites W1565736587 @default.
- W2479915852 cites W1573605934 @default.
- W2479915852 cites W1575373148 @default.
- W2479915852 cites W1577524529 @default.
- W2479915852 cites W1590498480 @default.
- W2479915852 cites W1595303882 @default.
- W2479915852 cites W1606251440 @default.
- W2479915852 cites W1672197616 @default.
- W2479915852 cites W1687109549 @default.
- W2479915852 cites W168772536 @default.
- W2479915852 cites W1976304167 @default.
- W2479915852 cites W1983753875 @default.
- W2479915852 cites W1984110133 @default.
- W2479915852 cites W1987971958 @default.
- W2479915852 cites W1997410866 @default.
- W2479915852 cites W2002229540 @default.
- W2479915852 cites W2003244299 @default.
- W2479915852 cites W2006238684 @default.
- W2479915852 cites W2007413993 @default.
- W2479915852 cites W2008788779 @default.
- W2479915852 cites W2011191813 @default.
- W2479915852 cites W2018317042 @default.
- W2479915852 cites W2018416842 @default.
- W2479915852 cites W2021137021 @default.
- W2479915852 cites W2028975680 @default.
- W2479915852 cites W2029064186 @default.
- W2479915852 cites W2030499717 @default.
- W2479915852 cites W2030644393 @default.
- W2479915852 cites W2031406373 @default.
- W2479915852 cites W2033403400 @default.
- W2479915852 cites W2043362380 @default.
- W2479915852 cites W2044080809 @default.
- W2479915852 cites W2044386109 @default.
- W2479915852 cites W2049814849 @default.
- W2479915852 cites W2051224630 @default.
- W2479915852 cites W2061122559 @default.
- W2479915852 cites W2072343647 @default.
- W2479915852 cites W2078447495 @default.
- W2479915852 cites W2085487226 @default.
- W2479915852 cites W2089923519 @default.
- W2479915852 cites W2091672480 @default.
- W2479915852 cites W2096630704 @default.
- W2479915852 cites W2097743039 @default.
- W2479915852 cites W2098006457 @default.
- W2479915852 cites W2101924112 @default.
- W2479915852 cites W2106754084 @default.
- W2479915852 cites W2107278083 @default.
- W2479915852 cites W2108323654 @default.
- W2479915852 cites W2108354365 @default.
- W2479915852 cites W2113586398 @default.
- W2479915852 cites W2114294349 @default.
- W2479915852 cites W2117355841 @default.
- W2479915852 cites W2123256336 @default.
- W2479915852 cites W2124379907 @default.
- W2479915852 cites W2124477890 @default.
- W2479915852 cites W2125070513 @default.
- W2479915852 cites W2127017215 @default.
- W2479915852 cites W2129066856 @default.
- W2479915852 cites W2136846911 @default.
- W2479915852 cites W2136870399 @default.
- W2479915852 cites W2140942285 @default.
- W2479915852 cites W2141224816 @default.
- W2479915852 cites W2143379662 @default.
- W2479915852 cites W2144549472 @default.
- W2479915852 cites W2148538500 @default.
- W2479915852 cites W2149544245 @default.
- W2479915852 cites W2149991777 @default.
- W2479915852 cites W2150688459 @default.
- W2479915852 cites W2150738795 @default.
- W2479915852 cites W2156365280 @default.
- W2479915852 cites W2157133710 @default.
- W2479915852 cites W2160406974 @default.
- W2479915852 cites W2164988966 @default.
- W2479915852 cites W2168532736 @default.
- W2479915852 cites W2169446650 @default.
- W2479915852 cites W2171393665 @default.
- W2479915852 cites W2186535340 @default.
- W2479915852 cites W2247455993 @default.
- W2479915852 cites W2361955151 @default.
- W2479915852 cites W2402230369 @default.
- W2479915852 cites W2404779194 @default.
- W2479915852 cites W2406794096 @default.
- W2479915852 cites W2432267564 @default.
- W2479915852 cites W2501069295 @default.