Matches in SemOpenAlex for { <https://semopenalex.org/work/W2480016740> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2480016740 abstract "The landscape of distributed computing is rapidly evolving, with computers exhibiting increasing processing capabilities with many-core architectures. Almost every field of science is now data driven and requires analysis of massive datasets. The algorithms for analytics such as machine learning can be used to discover properties of a given dataset and make predictions based on it. However, there is still a lack of simple and unified programming frameworks for these data intensive applications, and many existing efforts are designed with specialized means to speed up individual algorithms. In this thesis research, a distributed programming model, MapCollective, is defined so that it can be easily applied to many machine learning algorithms. Specifically, algorithms that fit the iterative computation model can be easily parallelized with a unique collective communication layer for efficient synchronization. In contrast to traditional parallelization strategies that focus on handling high volume input data, a lesser known challenge is that the shared model data between parallel workers, is equally high volume in multidimensions and required to be communicated continually during the entire execution. This extends the understanding of data aspects in computation from in-memory caching of input data (e.g. iterative MapReduce model) to fine-grained synchronization on model data (e.g. MapCollective model). A library called Harp is developed as a Hadoop plugin to demonstrate that sophisticated machine learning algorithms can be simply abstracted with the MapCollective model and conveniently developed on top of the MapReduce framework. K-means and Multi-Dimensional Scaling (MDS) are tested over 4096 threads on the IU Big Red II Supercomputer. The results show linear speedup with an increasing number of parallel units." @default.
- W2480016740 created "2016-08-23" @default.
- W2480016740 creator A5010626339 @default.
- W2480016740 date "2016-04-01" @default.
- W2480016740 modified "2023-09-26" @default.
- W2480016740 title "A Collective Communication Layer for the Software Stack of Big Data Analytics" @default.
- W2480016740 cites W1880262756 @default.
- W2480016740 cites W1976860187 @default.
- W2480016740 cites W1996486509 @default.
- W2480016740 cites W2005414918 @default.
- W2480016740 cites W2060393849 @default.
- W2480016740 cites W2095326236 @default.
- W2480016740 cites W2096544401 @default.
- W2480016740 cites W2108444517 @default.
- W2480016740 cites W2109722477 @default.
- W2480016740 cites W2110514750 @default.
- W2480016740 cites W2119391823 @default.
- W2480016740 cites W2122354300 @default.
- W2480016740 cites W2150593711 @default.
- W2480016740 cites W2170616854 @default.
- W2480016740 cites W2170796499 @default.
- W2480016740 cites W2173213060 @default.
- W2480016740 cites W2189465200 @default.
- W2480016740 cites W2577770711 @default.
- W2480016740 cites W78077100 @default.
- W2480016740 doi "https://doi.org/10.1109/ic2ew.2016.35" @default.
- W2480016740 hasPublicationYear "2016" @default.
- W2480016740 type Work @default.
- W2480016740 sameAs 2480016740 @default.
- W2480016740 citedByCount "2" @default.
- W2480016740 countsByYear W24800167402017 @default.
- W2480016740 countsByYear W24800167402019 @default.
- W2480016740 crossrefType "proceedings-article" @default.
- W2480016740 hasAuthorship W2480016740A5010626339 @default.
- W2480016740 hasConcept C119857082 @default.
- W2480016740 hasConcept C120314980 @default.
- W2480016740 hasConcept C124101348 @default.
- W2480016740 hasConcept C127162648 @default.
- W2480016740 hasConcept C173608175 @default.
- W2480016740 hasConcept C199360897 @default.
- W2480016740 hasConcept C2778562939 @default.
- W2480016740 hasConcept C31258907 @default.
- W2480016740 hasConcept C34165917 @default.
- W2480016740 hasConcept C41008148 @default.
- W2480016740 hasConcept C75684735 @default.
- W2480016740 hasConcept C79158427 @default.
- W2480016740 hasConceptScore W2480016740C119857082 @default.
- W2480016740 hasConceptScore W2480016740C120314980 @default.
- W2480016740 hasConceptScore W2480016740C124101348 @default.
- W2480016740 hasConceptScore W2480016740C127162648 @default.
- W2480016740 hasConceptScore W2480016740C173608175 @default.
- W2480016740 hasConceptScore W2480016740C199360897 @default.
- W2480016740 hasConceptScore W2480016740C2778562939 @default.
- W2480016740 hasConceptScore W2480016740C31258907 @default.
- W2480016740 hasConceptScore W2480016740C34165917 @default.
- W2480016740 hasConceptScore W2480016740C41008148 @default.
- W2480016740 hasConceptScore W2480016740C75684735 @default.
- W2480016740 hasConceptScore W2480016740C79158427 @default.
- W2480016740 hasLocation W24800167401 @default.
- W2480016740 hasOpenAccess W2480016740 @default.
- W2480016740 hasPrimaryLocation W24800167401 @default.
- W2480016740 hasRelatedWork W1493246792 @default.
- W2480016740 hasRelatedWork W1597017619 @default.
- W2480016740 hasRelatedWork W1636903037 @default.
- W2480016740 hasRelatedWork W1974396493 @default.
- W2480016740 hasRelatedWork W1996486509 @default.
- W2480016740 hasRelatedWork W2006178532 @default.
- W2480016740 hasRelatedWork W2050535280 @default.
- W2480016740 hasRelatedWork W2091461034 @default.
- W2480016740 hasRelatedWork W2096845271 @default.
- W2480016740 hasRelatedWork W2247125699 @default.
- W2480016740 hasRelatedWork W2272338759 @default.
- W2480016740 hasRelatedWork W2284990668 @default.
- W2480016740 hasRelatedWork W2295302693 @default.
- W2480016740 hasRelatedWork W2302915373 @default.
- W2480016740 hasRelatedWork W2312389011 @default.
- W2480016740 hasRelatedWork W2406302075 @default.
- W2480016740 hasRelatedWork W2518630465 @default.
- W2480016740 hasRelatedWork W2763975932 @default.
- W2480016740 hasRelatedWork W2944195376 @default.
- W2480016740 hasRelatedWork W45480466 @default.
- W2480016740 isParatext "false" @default.
- W2480016740 isRetracted "false" @default.
- W2480016740 magId "2480016740" @default.
- W2480016740 workType "article" @default.