Matches in SemOpenAlex for { <https://semopenalex.org/work/W2480874920> ?p ?o ?g. }
- W2480874920 abstract "This is Part II of a series of two papers where we address sequential estimation of wide-sense stationary autoregressive moving average (ARMA) state processes by particle filtering. In Part I, we considered a state-space model where the state was an ARMA process of known order and where the parameters of the process could be known or unknown. In this paper, we extend our work from Part I by considering the same type of models, with the added complexity that the ARMA processes are now of unknown order. Instead of working on a scheme that first tracks the state by operating with different assumed models, and then selects the best model by using a predefined criterion, we present a method that directly estimates the state without the need of knowing the model order. We derive the transition density of the state for unknown ARMA model order, and propose a particle filter based on that density and the empirical Bayesian methodology. We demonstrate the performance of the proposed method with computer simulations and compare it with the methods from Part I." @default.
- W2480874920 created "2016-08-23" @default.
- W2480874920 creator A5006962534 @default.
- W2480874920 creator A5040717332 @default.
- W2480874920 date "2017-01-15" @default.
- W2480874920 modified "2023-09-24" @default.
- W2480874920 title "Sequential Estimation of Hidden ARMA Processes by Particle Filtering—Part I" @default.
- W2480874920 cites W103475893 @default.
- W2480874920 cites W1483307070 @default.
- W2480874920 cites W1499861606 @default.
- W2480874920 cites W1506414135 @default.
- W2480874920 cites W1513008779 @default.
- W2480874920 cites W1520710862 @default.
- W2480874920 cites W1544274373 @default.
- W2480874920 cites W1566395535 @default.
- W2480874920 cites W1598813349 @default.
- W2480874920 cites W1883186006 @default.
- W2480874920 cites W1965392255 @default.
- W2480874920 cites W1965943163 @default.
- W2480874920 cites W1998841711 @default.
- W2480874920 cites W1999674105 @default.
- W2480874920 cites W2001250891 @default.
- W2480874920 cites W2006866859 @default.
- W2480874920 cites W2014730874 @default.
- W2480874920 cites W2019928247 @default.
- W2480874920 cites W2022228946 @default.
- W2480874920 cites W2029027380 @default.
- W2480874920 cites W2040196349 @default.
- W2480874920 cites W2047554048 @default.
- W2480874920 cites W2058815839 @default.
- W2480874920 cites W2064516187 @default.
- W2480874920 cites W2064517238 @default.
- W2480874920 cites W2065266611 @default.
- W2480874920 cites W2069739265 @default.
- W2480874920 cites W2071988465 @default.
- W2480874920 cites W2081741802 @default.
- W2480874920 cites W2085157190 @default.
- W2480874920 cites W2086374241 @default.
- W2480874920 cites W2092559013 @default.
- W2480874920 cites W2098613108 @default.
- W2480874920 cites W2108755939 @default.
- W2480874920 cites W2109965835 @default.
- W2480874920 cites W2112007346 @default.
- W2480874920 cites W2114160172 @default.
- W2480874920 cites W2122485798 @default.
- W2480874920 cites W2123487311 @default.
- W2480874920 cites W2125996678 @default.
- W2480874920 cites W2127406017 @default.
- W2480874920 cites W2127589059 @default.
- W2480874920 cites W2137345842 @default.
- W2480874920 cites W2148061324 @default.
- W2480874920 cites W2148613679 @default.
- W2480874920 cites W2150642605 @default.
- W2480874920 cites W2155739232 @default.
- W2480874920 cites W2160337655 @default.
- W2480874920 cites W2165609874 @default.
- W2480874920 cites W2166129575 @default.
- W2480874920 cites W2167442255 @default.
- W2480874920 cites W2168175751 @default.
- W2480874920 cites W2170621196 @default.
- W2480874920 cites W2213039871 @default.
- W2480874920 cites W2294875987 @default.
- W2480874920 cites W2497534953 @default.
- W2480874920 cites W2537259742 @default.
- W2480874920 cites W2921430350 @default.
- W2480874920 cites W3015420945 @default.
- W2480874920 cites W3021601205 @default.
- W2480874920 cites W3103934441 @default.
- W2480874920 cites W3125096521 @default.
- W2480874920 cites W357154381 @default.
- W2480874920 cites W386331423 @default.
- W2480874920 cites W2114001875 @default.
- W2480874920 doi "https://doi.org/10.1109/tsp.2016.2598309" @default.
- W2480874920 hasPublicationYear "2017" @default.
- W2480874920 type Work @default.
- W2480874920 sameAs 2480874920 @default.
- W2480874920 citedByCount "7" @default.
- W2480874920 countsByYear W24808749202017 @default.
- W2480874920 countsByYear W24808749202018 @default.
- W2480874920 countsByYear W24808749202020 @default.
- W2480874920 crossrefType "journal-article" @default.
- W2480874920 hasAuthorship W2480874920A5006962534 @default.
- W2480874920 hasAuthorship W2480874920A5040717332 @default.
- W2480874920 hasBestOaLocation W24808749201 @default.
- W2480874920 hasConcept C105795698 @default.
- W2480874920 hasConcept C11413529 @default.
- W2480874920 hasConcept C119857082 @default.
- W2480874920 hasConcept C143724316 @default.
- W2480874920 hasConcept C151406439 @default.
- W2480874920 hasConcept C151730666 @default.
- W2480874920 hasConcept C154945302 @default.
- W2480874920 hasConcept C157286648 @default.
- W2480874920 hasConcept C159877910 @default.
- W2480874920 hasConcept C175706884 @default.
- W2480874920 hasConcept C33923547 @default.
- W2480874920 hasConcept C41008148 @default.
- W2480874920 hasConcept C48103436 @default.
- W2480874920 hasConcept C52421305 @default.
- W2480874920 hasConcept C52918065 @default.
- W2480874920 hasConcept C72434380 @default.