Matches in SemOpenAlex for { <https://semopenalex.org/work/W2481409590> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2481409590 endingPage "286" @default.
- W2481409590 startingPage "277" @default.
- W2481409590 abstract "In statistical signal processing, we often deal with a real nonnegative cost function, such as a likelihood function or a quadratic form, which is then either analytically or numerically optimized with respect to a vector or matrix of parameters. This involves taking derivatives with respect to vectors or matrices, leading to gradient vectors and Jacobian and Hessian matrices. What happens when the parameters are complex-valued? That is, how do we differentiate a real-valued function with respect to a complex argument? What makes this situation confusing is that classical complex analysis tells us that a complex function is differentiable on its entire domain if and only if it is holomorphic (which is a synonym for complex analytic ). A holomorphic function with nonzero derivative is conformal because it preserves angles (including their orientations) and the shapes of infinitesimally small figures (but not necessarily their size) in the complex plane. Since nonconstant real-valued functions defined on the complex domain cannot be holomorphic, their classical complex derivatives do not exist. We can, of course, regard a function f defined on ℂ n as a function defined on ℝ 2 n . If f is differentiable on ℝ 2 n , it is said to be real-differentiable , and if f is differentiable on ℂ n , it is complex-differentiable . A function is complex-differentiable if and only if it is real-differentiable and the Cauchy–Riemann equations hold. Is there a way to define generalized complex derivatives for functions that are real-differentiable but not complex-differentiable?" @default.
- W2481409590 created "2016-08-23" @default.
- W2481409590 creator A5006601601 @default.
- W2481409590 creator A5080469112 @default.
- W2481409590 date "2011-07-20" @default.
- W2481409590 modified "2023-10-14" @default.
- W2481409590 title "Complex differential calculus (Wirtinger calculus)" @default.
- W2481409590 doi "https://doi.org/10.1017/cbo9780511815911.014" @default.
- W2481409590 hasPublicationYear "2011" @default.
- W2481409590 type Work @default.
- W2481409590 sameAs 2481409590 @default.
- W2481409590 citedByCount "0" @default.
- W2481409590 crossrefType "book-chapter" @default.
- W2481409590 hasAuthorship W2481409590A5006601601 @default.
- W2481409590 hasAuthorship W2481409590A5080469112 @default.
- W2481409590 hasConcept C107837686 @default.
- W2481409590 hasConcept C134306372 @default.
- W2481409590 hasConcept C14036430 @default.
- W2481409590 hasConcept C179117685 @default.
- W2481409590 hasConcept C200331156 @default.
- W2481409590 hasConcept C2011187 @default.
- W2481409590 hasConcept C202444582 @default.
- W2481409590 hasConcept C202615002 @default.
- W2481409590 hasConcept C203616005 @default.
- W2481409590 hasConcept C204575570 @default.
- W2481409590 hasConcept C205979905 @default.
- W2481409590 hasConcept C206929604 @default.
- W2481409590 hasConcept C28826006 @default.
- W2481409590 hasConcept C33923547 @default.
- W2481409590 hasConcept C43987214 @default.
- W2481409590 hasConcept C45962547 @default.
- W2481409590 hasConcept C78458016 @default.
- W2481409590 hasConcept C86803240 @default.
- W2481409590 hasConceptScore W2481409590C107837686 @default.
- W2481409590 hasConceptScore W2481409590C134306372 @default.
- W2481409590 hasConceptScore W2481409590C14036430 @default.
- W2481409590 hasConceptScore W2481409590C179117685 @default.
- W2481409590 hasConceptScore W2481409590C200331156 @default.
- W2481409590 hasConceptScore W2481409590C2011187 @default.
- W2481409590 hasConceptScore W2481409590C202444582 @default.
- W2481409590 hasConceptScore W2481409590C202615002 @default.
- W2481409590 hasConceptScore W2481409590C203616005 @default.
- W2481409590 hasConceptScore W2481409590C204575570 @default.
- W2481409590 hasConceptScore W2481409590C205979905 @default.
- W2481409590 hasConceptScore W2481409590C206929604 @default.
- W2481409590 hasConceptScore W2481409590C28826006 @default.
- W2481409590 hasConceptScore W2481409590C33923547 @default.
- W2481409590 hasConceptScore W2481409590C43987214 @default.
- W2481409590 hasConceptScore W2481409590C45962547 @default.
- W2481409590 hasConceptScore W2481409590C78458016 @default.
- W2481409590 hasConceptScore W2481409590C86803240 @default.
- W2481409590 hasLocation W24814095901 @default.
- W2481409590 hasOpenAccess W2481409590 @default.
- W2481409590 hasPrimaryLocation W24814095901 @default.
- W2481409590 hasRelatedWork W1004196404 @default.
- W2481409590 hasRelatedWork W138987025 @default.
- W2481409590 hasRelatedWork W1506713792 @default.
- W2481409590 hasRelatedWork W1631765761 @default.
- W2481409590 hasRelatedWork W2004441218 @default.
- W2481409590 hasRelatedWork W2025093930 @default.
- W2481409590 hasRelatedWork W2035575897 @default.
- W2481409590 hasRelatedWork W2092685560 @default.
- W2481409590 hasRelatedWork W2149562274 @default.
- W2481409590 hasRelatedWork W2319534107 @default.
- W2481409590 hasRelatedWork W2497955003 @default.
- W2481409590 hasRelatedWork W2525744650 @default.
- W2481409590 hasRelatedWork W2537596701 @default.
- W2481409590 hasRelatedWork W2564370513 @default.
- W2481409590 hasRelatedWork W2912012841 @default.
- W2481409590 hasRelatedWork W2966398289 @default.
- W2481409590 hasRelatedWork W3023583150 @default.
- W2481409590 hasRelatedWork W3023610599 @default.
- W2481409590 hasRelatedWork W3211214921 @default.
- W2481409590 hasRelatedWork W46705755 @default.
- W2481409590 isParatext "false" @default.
- W2481409590 isRetracted "false" @default.
- W2481409590 magId "2481409590" @default.
- W2481409590 workType "book-chapter" @default.