Matches in SemOpenAlex for { <https://semopenalex.org/work/W2481720119> ?p ?o ?g. }
- W2481720119 endingPage "1665" @default.
- W2481720119 startingPage "1649" @default.
- W2481720119 abstract "Consider the following fractional Kirchhoff equations involving critical exponent: urn:x-wiley:mma:media:mma4085:mma4085-math-0001 where (−Δ) α is the fractional Laplacian operator with α ∈(0,1), , , λ 2 >0 and is the critical Sobolev exponent, V ( x ) and k ( x ) are functions satisfying some extra hypotheses. Based on the principle of concentration compactness in the fractional Sobolev space, the minimax arguments, Pohozaev identity, and suitable truncation techniques, we obtain the existence of a nontrivial weak solution for the previously mentioned equations without assuming the Ambrosetti–Rabinowitz condition on the subcritical nonlinearity f . Copyright © 2016 John Wiley & Sons, Ltd." @default.
- W2481720119 created "2016-08-23" @default.
- W2481720119 creator A5089966579 @default.
- W2481720119 creator A5090875147 @default.
- W2481720119 date "2016-08-03" @default.
- W2481720119 modified "2023-09-22" @default.
- W2481720119 title "Existence of solutions for critical fractional Kirchhoff problems" @default.
- W2481720119 cites W137582528 @default.
- W2481720119 cites W1531423298 @default.
- W2481720119 cites W1843205648 @default.
- W2481720119 cites W1845060646 @default.
- W2481720119 cites W1976659984 @default.
- W2481720119 cites W1982258462 @default.
- W2481720119 cites W1986408858 @default.
- W2481720119 cites W1989491273 @default.
- W2481720119 cites W2011095781 @default.
- W2481720119 cites W2011176581 @default.
- W2481720119 cites W2022671370 @default.
- W2481720119 cites W2038928461 @default.
- W2481720119 cites W2048102514 @default.
- W2481720119 cites W2049434583 @default.
- W2481720119 cites W2056767515 @default.
- W2481720119 cites W2324946944 @default.
- W2481720119 cites W2327218125 @default.
- W2481720119 cites W2412363489 @default.
- W2481720119 cites W2527175614 @default.
- W2481720119 cites W2789500280 @default.
- W2481720119 cites W2916567905 @default.
- W2481720119 cites W2962724321 @default.
- W2481720119 cites W3103229763 @default.
- W2481720119 cites W4253577938 @default.
- W2481720119 cites W847211900 @default.
- W2481720119 doi "https://doi.org/10.1002/mma.4085" @default.
- W2481720119 hasPublicationYear "2016" @default.
- W2481720119 type Work @default.
- W2481720119 sameAs 2481720119 @default.
- W2481720119 citedByCount "2" @default.
- W2481720119 countsByYear W24817201192018 @default.
- W2481720119 crossrefType "journal-article" @default.
- W2481720119 hasAuthorship W2481720119A5089966579 @default.
- W2481720119 hasAuthorship W2481720119A5090875147 @default.
- W2481720119 hasConcept C104317684 @default.
- W2481720119 hasConcept C105795698 @default.
- W2481720119 hasConcept C106195933 @default.
- W2481720119 hasConcept C121332964 @default.
- W2481720119 hasConcept C126255220 @default.
- W2481720119 hasConcept C134306372 @default.
- W2481720119 hasConcept C138885662 @default.
- W2481720119 hasConcept C149728462 @default.
- W2481720119 hasConcept C158448853 @default.
- W2481720119 hasConcept C158622935 @default.
- W2481720119 hasConcept C164154869 @default.
- W2481720119 hasConcept C165700671 @default.
- W2481720119 hasConcept C17020691 @default.
- W2481720119 hasConcept C185592680 @default.
- W2481720119 hasConcept C185644265 @default.
- W2481720119 hasConcept C18648836 @default.
- W2481720119 hasConcept C202444582 @default.
- W2481720119 hasConcept C2524010 @default.
- W2481720119 hasConcept C2775913539 @default.
- W2481720119 hasConcept C2778572836 @default.
- W2481720119 hasConcept C2779779452 @default.
- W2481720119 hasConcept C2780388253 @default.
- W2481720119 hasConcept C33923547 @default.
- W2481720119 hasConcept C41895202 @default.
- W2481720119 hasConcept C55493867 @default.
- W2481720119 hasConcept C62520636 @default.
- W2481720119 hasConcept C86339819 @default.
- W2481720119 hasConcept C99730327 @default.
- W2481720119 hasConcept C99844830 @default.
- W2481720119 hasConceptScore W2481720119C104317684 @default.
- W2481720119 hasConceptScore W2481720119C105795698 @default.
- W2481720119 hasConceptScore W2481720119C106195933 @default.
- W2481720119 hasConceptScore W2481720119C121332964 @default.
- W2481720119 hasConceptScore W2481720119C126255220 @default.
- W2481720119 hasConceptScore W2481720119C134306372 @default.
- W2481720119 hasConceptScore W2481720119C138885662 @default.
- W2481720119 hasConceptScore W2481720119C149728462 @default.
- W2481720119 hasConceptScore W2481720119C158448853 @default.
- W2481720119 hasConceptScore W2481720119C158622935 @default.
- W2481720119 hasConceptScore W2481720119C164154869 @default.
- W2481720119 hasConceptScore W2481720119C165700671 @default.
- W2481720119 hasConceptScore W2481720119C17020691 @default.
- W2481720119 hasConceptScore W2481720119C185592680 @default.
- W2481720119 hasConceptScore W2481720119C185644265 @default.
- W2481720119 hasConceptScore W2481720119C18648836 @default.
- W2481720119 hasConceptScore W2481720119C202444582 @default.
- W2481720119 hasConceptScore W2481720119C2524010 @default.
- W2481720119 hasConceptScore W2481720119C2775913539 @default.
- W2481720119 hasConceptScore W2481720119C2778572836 @default.
- W2481720119 hasConceptScore W2481720119C2779779452 @default.
- W2481720119 hasConceptScore W2481720119C2780388253 @default.
- W2481720119 hasConceptScore W2481720119C33923547 @default.
- W2481720119 hasConceptScore W2481720119C41895202 @default.
- W2481720119 hasConceptScore W2481720119C55493867 @default.
- W2481720119 hasConceptScore W2481720119C62520636 @default.
- W2481720119 hasConceptScore W2481720119C86339819 @default.
- W2481720119 hasConceptScore W2481720119C99730327 @default.