Matches in SemOpenAlex for { <https://semopenalex.org/work/W2481760420> ?p ?o ?g. }
- W2481760420 endingPage "173" @default.
- W2481760420 startingPage "137" @default.
- W2481760420 abstract "To significantly increase the contribution of numerical computational fluid dynamics (CFD) simulation for risk assessment and decision making, it is important to quantitatively measure the impact of uncertainties to assess the reliability and robustness of the results. As unsteady high-fidelity CFD simulations are becoming the standard for industrial applications, reducing the number of required samples to perform sensitivity (SA) and uncertainty quantification (UQ) analysis is an actual engineering challenge. The novel approach presented in this paper is based on an efficient hybridization between the anchored-ANOVA and the POD/Kriging methods, which have already been used in CFD-UQ realistic applications, and the definition of best practices to achieve global accuracy. The anchored-ANOVA method is used to efficiently reduce the UQ dimension space, while the POD/Kriging is used to smooth and interpolate each anchored-ANOVA term. The main advantages of the proposed method are illustrated through four applications with increasing complexity, most of them based on Large-Eddy Simulation as a high-fidelity CFD tool: the turbulent channel flow, the flow around an isolated bluff-body, a pedestrian wind comfort study in a full scale urban area and an application to toxic gas dispersion in a full scale city area. The proposed c-APK method (anchored-ANOVA-POD/Kriging) inherits the advantages of each key element: interpolation through POD/Kriging precludes the use of quadrature schemes therefore allowing for a more flexible sampling strategy while the ANOVA decomposition allows for a better domain exploration. A comparison of the three methods is given for each application. In addition, the importance of adding flexibility to the control parameters and the choice of the quantity of interest (QoI) are discussed. As a result, global accuracy can be achieved with a reasonable number of samples allowing computationally expensive CFD-UQ analysis." @default.
- W2481760420 created "2016-08-23" @default.
- W2481760420 creator A5001884735 @default.
- W2481760420 creator A5034895999 @default.
- W2481760420 date "2016-11-01" @default.
- W2481760420 modified "2023-09-25" @default.
- W2481760420 title "A hybrid anchored-ANOVA – POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations" @default.
- W2481760420 cites W1552518028 @default.
- W2481760420 cites W1559030289 @default.
- W2481760420 cites W1963752533 @default.
- W2481760420 cites W1966130379 @default.
- W2481760420 cites W1968685496 @default.
- W2481760420 cites W1970702125 @default.
- W2481760420 cites W1974963628 @default.
- W2481760420 cites W1979357063 @default.
- W2481760420 cites W1981251392 @default.
- W2481760420 cites W1983492963 @default.
- W2481760420 cites W1984584655 @default.
- W2481760420 cites W1997272607 @default.
- W2481760420 cites W2004132656 @default.
- W2481760420 cites W2006579190 @default.
- W2481760420 cites W2007535697 @default.
- W2481760420 cites W2008034179 @default.
- W2481760420 cites W2011838656 @default.
- W2481760420 cites W2014181466 @default.
- W2481760420 cites W2031295804 @default.
- W2481760420 cites W2033954036 @default.
- W2481760420 cites W2036843121 @default.
- W2481760420 cites W2040386053 @default.
- W2481760420 cites W2045355467 @default.
- W2481760420 cites W2050297026 @default.
- W2481760420 cites W2050932443 @default.
- W2481760420 cites W2059164485 @default.
- W2481760420 cites W2060843763 @default.
- W2481760420 cites W2060964027 @default.
- W2481760420 cites W2063261057 @default.
- W2481760420 cites W2065083037 @default.
- W2481760420 cites W2082067916 @default.
- W2481760420 cites W2082914312 @default.
- W2481760420 cites W2086755047 @default.
- W2481760420 cites W2088765131 @default.
- W2481760420 cites W2089417460 @default.
- W2481760420 cites W2092901877 @default.
- W2481760420 cites W2095171056 @default.
- W2481760420 cites W2098922184 @default.
- W2481760420 cites W2099106100 @default.
- W2481760420 cites W2105857832 @default.
- W2481760420 cites W2107168535 @default.
- W2481760420 cites W2117242079 @default.
- W2481760420 cites W2136602340 @default.
- W2481760420 cites W2146476360 @default.
- W2481760420 cites W2158617781 @default.
- W2481760420 cites W2163221713 @default.
- W2481760420 cites W2301534546 @default.
- W2481760420 cites W2963889731 @default.
- W2481760420 cites W3100692136 @default.
- W2481760420 cites W999207820 @default.
- W2481760420 doi "https://doi.org/10.1016/j.jcp.2016.07.036" @default.
- W2481760420 hasPublicationYear "2016" @default.
- W2481760420 type Work @default.
- W2481760420 sameAs 2481760420 @default.
- W2481760420 citedByCount "33" @default.
- W2481760420 countsByYear W24817604202017 @default.
- W2481760420 countsByYear W24817604202018 @default.
- W2481760420 countsByYear W24817604202019 @default.
- W2481760420 countsByYear W24817604202020 @default.
- W2481760420 countsByYear W24817604202021 @default.
- W2481760420 countsByYear W24817604202022 @default.
- W2481760420 countsByYear W24817604202023 @default.
- W2481760420 crossrefType "journal-article" @default.
- W2481760420 hasAuthorship W2481760420A5001884735 @default.
- W2481760420 hasAuthorship W2481760420A5034895999 @default.
- W2481760420 hasConcept C105795698 @default.
- W2481760420 hasConcept C113364801 @default.
- W2481760420 hasConcept C121332964 @default.
- W2481760420 hasConcept C127413603 @default.
- W2481760420 hasConcept C137776501 @default.
- W2481760420 hasConcept C146978453 @default.
- W2481760420 hasConcept C1633027 @default.
- W2481760420 hasConcept C24890656 @default.
- W2481760420 hasConcept C2776459999 @default.
- W2481760420 hasConcept C28826006 @default.
- W2481760420 hasConcept C2984998066 @default.
- W2481760420 hasConcept C32230216 @default.
- W2481760420 hasConcept C33923547 @default.
- W2481760420 hasConcept C41008148 @default.
- W2481760420 hasConcept C6557445 @default.
- W2481760420 hasConcept C76155785 @default.
- W2481760420 hasConcept C81692654 @default.
- W2481760420 hasConcept C86803240 @default.
- W2481760420 hasConceptScore W2481760420C105795698 @default.
- W2481760420 hasConceptScore W2481760420C113364801 @default.
- W2481760420 hasConceptScore W2481760420C121332964 @default.
- W2481760420 hasConceptScore W2481760420C127413603 @default.
- W2481760420 hasConceptScore W2481760420C137776501 @default.
- W2481760420 hasConceptScore W2481760420C146978453 @default.
- W2481760420 hasConceptScore W2481760420C1633027 @default.
- W2481760420 hasConceptScore W2481760420C24890656 @default.