Matches in SemOpenAlex for { <https://semopenalex.org/work/W2482009712> ?p ?o ?g. }
- W2482009712 abstract "The realization of synthetic gauge fields has attracted a lot of attention recently in relation with periodically driven systems and the Floquet theory. In ultra-cold atom systems in optical lattices and photonic networks, this allows to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall phases and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane models still possess a topologically non-trivial band structure associated with chiral edge modes (without the presence of a net unit flux in a unit cell), then referring to the quantum anomalous Hall effect. Focusing on (interacting) boson systems in s-wave bands of the lattice, we show how to engineer through the Floquet theory, a quantum phase transition between a uniform superfluid and a BEC (Bose-Einstein Condensate) analog of FFLO (Fulde-Ferrell-Larkin-Ovchinnikov) states, where bosons condense at non-zero wave-vectors. We perform a Ginzburg-Landau analysis of the quantum phase transition on the graphene lattice, and compute observables such as chiral currents and the momentum distribution. The results are supported by exact diagonalization calculations and compared with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries." @default.
- W2482009712 created "2016-08-23" @default.
- W2482009712 creator A5046471767 @default.
- W2482009712 creator A5062090272 @default.
- W2482009712 creator A5079134456 @default.
- W2482009712 date "2017-01-03" @default.
- W2482009712 modified "2023-09-27" @default.
- W2482009712 title "Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions" @default.
- W2482009712 cites W1487002516 @default.
- W2482009712 cites W1508600475 @default.
- W2482009712 cites W1527964431 @default.
- W2482009712 cites W1528628928 @default.
- W2482009712 cites W1542921455 @default.
- W2482009712 cites W1545396108 @default.
- W2482009712 cites W1550232321 @default.
- W2482009712 cites W1587015659 @default.
- W2482009712 cites W1597232488 @default.
- W2482009712 cites W1601700513 @default.
- W2482009712 cites W1686863828 @default.
- W2482009712 cites W1711729078 @default.
- W2482009712 cites W1717027248 @default.
- W2482009712 cites W1739343289 @default.
- W2482009712 cites W1751064777 @default.
- W2482009712 cites W1757295334 @default.
- W2482009712 cites W1767997949 @default.
- W2482009712 cites W1834231020 @default.
- W2482009712 cites W1884709194 @default.
- W2482009712 cites W1897440439 @default.
- W2482009712 cites W1903493486 @default.
- W2482009712 cites W1914955627 @default.
- W2482009712 cites W1957416724 @default.
- W2482009712 cites W1964412625 @default.
- W2482009712 cites W1965848318 @default.
- W2482009712 cites W1965945623 @default.
- W2482009712 cites W1966070481 @default.
- W2482009712 cites W1966317607 @default.
- W2482009712 cites W1966453579 @default.
- W2482009712 cites W1967531269 @default.
- W2482009712 cites W1968557970 @default.
- W2482009712 cites W1970188810 @default.
- W2482009712 cites W1970868371 @default.
- W2482009712 cites W1976175889 @default.
- W2482009712 cites W1976629699 @default.
- W2482009712 cites W1978380414 @default.
- W2482009712 cites W1978426240 @default.
- W2482009712 cites W1978578075 @default.
- W2482009712 cites W1978998573 @default.
- W2482009712 cites W1980664748 @default.
- W2482009712 cites W1986044362 @default.
- W2482009712 cites W1986306617 @default.
- W2482009712 cites W1987683350 @default.
- W2482009712 cites W1987693322 @default.
- W2482009712 cites W1987750004 @default.
- W2482009712 cites W1991741527 @default.
- W2482009712 cites W1993896628 @default.
- W2482009712 cites W1996350481 @default.
- W2482009712 cites W1996586623 @default.
- W2482009712 cites W1996795209 @default.
- W2482009712 cites W1997972857 @default.
- W2482009712 cites W2000917236 @default.
- W2482009712 cites W2003095492 @default.
- W2482009712 cites W2004174983 @default.
- W2482009712 cites W2004871937 @default.
- W2482009712 cites W2005527789 @default.
- W2482009712 cites W2005763218 @default.
- W2482009712 cites W2006294391 @default.
- W2482009712 cites W2007421284 @default.
- W2482009712 cites W2012813559 @default.
- W2482009712 cites W2016710326 @default.
- W2482009712 cites W2020332193 @default.
- W2482009712 cites W2020581398 @default.
- W2482009712 cites W2020595981 @default.
- W2482009712 cites W2023360217 @default.
- W2482009712 cites W2023727159 @default.
- W2482009712 cites W2024563965 @default.
- W2482009712 cites W2027841684 @default.
- W2482009712 cites W2029566284 @default.
- W2482009712 cites W2031953360 @default.
- W2482009712 cites W2035024533 @default.
- W2482009712 cites W2035743770 @default.
- W2482009712 cites W2036468855 @default.
- W2482009712 cites W2038253876 @default.
- W2482009712 cites W2038531793 @default.
- W2482009712 cites W2038772068 @default.
- W2482009712 cites W2039763880 @default.
- W2482009712 cites W2040293432 @default.
- W2482009712 cites W2040503385 @default.
- W2482009712 cites W2040849740 @default.
- W2482009712 cites W2042158648 @default.
- W2482009712 cites W2043175787 @default.
- W2482009712 cites W2047340336 @default.
- W2482009712 cites W2047485595 @default.
- W2482009712 cites W2048646003 @default.
- W2482009712 cites W2052897990 @default.
- W2482009712 cites W2055070230 @default.
- W2482009712 cites W2055306257 @default.
- W2482009712 cites W2056404648 @default.
- W2482009712 cites W2056954128 @default.
- W2482009712 cites W2057273947 @default.
- W2482009712 cites W2061000251 @default.