Matches in SemOpenAlex for { <https://semopenalex.org/work/W2482685770> ?p ?o ?g. }
- W2482685770 abstract "Abstract Regression-based schemes have proven effective for locating landmarks on images. Most previous approaches either predict the positions of all points simultaneously, or use regressors that predict individual points combined with a global shape constraint. The former can be efficient, but such models tend to be less robust. Conversely, Random Forest (RF) voting methods for individual points have been shown to be robust and accurate, but can lead to very large models. We explore the continuum between these two approaches by training RF regressors to predict subsets of points. Multi-point regression voting was implemented within the Random Forest Regression Voting Constrained Local Model frame- work and evaluated on clinical and facial images. Significant model size reductions were achieved with little difference in accuracy. The approach may therefore be useful where high numbers of points, and limitations on memory or disk space, make single-point models impractically large." @default.
- W2482685770 created "2016-08-23" @default.
- W2482685770 creator A5003377941 @default.
- W2482685770 creator A5010012669 @default.
- W2482685770 creator A5049929595 @default.
- W2482685770 creator A5058456050 @default.
- W2482685770 creator A5087685985 @default.
- W2482685770 date "2016-01-01" @default.
- W2482685770 modified "2023-10-16" @default.
- W2482685770 title "Multi-point Regression Voting for Shape Model Matching" @default.
- W2482685770 cites W1573412753 @default.
- W2482685770 cites W1835499858 @default.
- W2482685770 cites W1937766607 @default.
- W2482685770 cites W1976047850 @default.
- W2482685770 cites W2009621568 @default.
- W2482685770 cites W2012885984 @default.
- W2482685770 cites W2030536784 @default.
- W2482685770 cites W2038952578 @default.
- W2482685770 cites W2046399019 @default.
- W2482685770 cites W2063806425 @default.
- W2482685770 cites W2098458263 @default.
- W2482685770 cites W2116277445 @default.
- W2482685770 cites W2134574706 @default.
- W2482685770 cites W2135132101 @default.
- W2482685770 cites W2136064009 @default.
- W2482685770 cites W2138406903 @default.
- W2482685770 cites W2149476927 @default.
- W2482685770 cites W2152826865 @default.
- W2482685770 cites W2163998463 @default.
- W2482685770 cites W2164598857 @default.
- W2482685770 cites W2286202077 @default.
- W2482685770 cites W2911964244 @default.
- W2482685770 cites W3021014134 @default.
- W2482685770 cites W915898 @default.
- W2482685770 doi "https://doi.org/10.1016/j.procs.2016.07.009" @default.
- W2482685770 hasPublicationYear "2016" @default.
- W2482685770 type Work @default.
- W2482685770 sameAs 2482685770 @default.
- W2482685770 citedByCount "1" @default.
- W2482685770 countsByYear W24826857702019 @default.
- W2482685770 crossrefType "journal-article" @default.
- W2482685770 hasAuthorship W2482685770A5003377941 @default.
- W2482685770 hasAuthorship W2482685770A5010012669 @default.
- W2482685770 hasAuthorship W2482685770A5049929595 @default.
- W2482685770 hasAuthorship W2482685770A5058456050 @default.
- W2482685770 hasAuthorship W2482685770A5087685985 @default.
- W2482685770 hasBestOaLocation W24826857701 @default.
- W2482685770 hasConcept C105795698 @default.
- W2482685770 hasConcept C11413529 @default.
- W2482685770 hasConcept C119857082 @default.
- W2482685770 hasConcept C124101348 @default.
- W2482685770 hasConcept C126042441 @default.
- W2482685770 hasConcept C152877465 @default.
- W2482685770 hasConcept C153180895 @default.
- W2482685770 hasConcept C154945302 @default.
- W2482685770 hasConcept C165064840 @default.
- W2482685770 hasConcept C169258074 @default.
- W2482685770 hasConcept C17744445 @default.
- W2482685770 hasConcept C199539241 @default.
- W2482685770 hasConcept C2524010 @default.
- W2482685770 hasConcept C2776036281 @default.
- W2482685770 hasConcept C28719098 @default.
- W2482685770 hasConcept C33923547 @default.
- W2482685770 hasConcept C41008148 @default.
- W2482685770 hasConcept C520049643 @default.
- W2482685770 hasConcept C76155785 @default.
- W2482685770 hasConcept C83546350 @default.
- W2482685770 hasConcept C94625758 @default.
- W2482685770 hasConceptScore W2482685770C105795698 @default.
- W2482685770 hasConceptScore W2482685770C11413529 @default.
- W2482685770 hasConceptScore W2482685770C119857082 @default.
- W2482685770 hasConceptScore W2482685770C124101348 @default.
- W2482685770 hasConceptScore W2482685770C126042441 @default.
- W2482685770 hasConceptScore W2482685770C152877465 @default.
- W2482685770 hasConceptScore W2482685770C153180895 @default.
- W2482685770 hasConceptScore W2482685770C154945302 @default.
- W2482685770 hasConceptScore W2482685770C165064840 @default.
- W2482685770 hasConceptScore W2482685770C169258074 @default.
- W2482685770 hasConceptScore W2482685770C17744445 @default.
- W2482685770 hasConceptScore W2482685770C199539241 @default.
- W2482685770 hasConceptScore W2482685770C2524010 @default.
- W2482685770 hasConceptScore W2482685770C2776036281 @default.
- W2482685770 hasConceptScore W2482685770C28719098 @default.
- W2482685770 hasConceptScore W2482685770C33923547 @default.
- W2482685770 hasConceptScore W2482685770C41008148 @default.
- W2482685770 hasConceptScore W2482685770C520049643 @default.
- W2482685770 hasConceptScore W2482685770C76155785 @default.
- W2482685770 hasConceptScore W2482685770C83546350 @default.
- W2482685770 hasConceptScore W2482685770C94625758 @default.
- W2482685770 hasLocation W24826857701 @default.
- W2482685770 hasOpenAccess W2482685770 @default.
- W2482685770 hasPrimaryLocation W24826857701 @default.
- W2482685770 hasRelatedWork W1508567255 @default.
- W2482685770 hasRelatedWork W1971238016 @default.
- W2482685770 hasRelatedWork W1987218205 @default.
- W2482685770 hasRelatedWork W1999985320 @default.
- W2482685770 hasRelatedWork W2015529673 @default.
- W2482685770 hasRelatedWork W2019978710 @default.
- W2482685770 hasRelatedWork W2037134354 @default.
- W2482685770 hasRelatedWork W2091451699 @default.