Matches in SemOpenAlex for { <https://semopenalex.org/work/W2483005842> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2483005842 endingPage "1991" @default.
- W2483005842 startingPage "1981" @default.
- W2483005842 abstract "Heat stress can reduce crop yield or even cause total crop failure. The ability to predict heat stress in advance would allow growers time to implement protective measures, helping to avoid such losses. This study presents a strategy for producing probabilistic heat stress forecasts for well‐watered cotton ( Gossypium hirsutum L.) in the Camilla, GA, region. Multiple linear regression was used to develop a cotton canopy temperature model based on predicted air temperature, humidity, solar radiation, and wind speed. The European Centre for Medium‐Range Weather Forecasts Ensemble Prediction System was used to predict the meteorological variables used in the canopy temperature model, which produced 10‐d probabilistic canopy temperature forecasts for each day of observations during 2014. A statistical mean bias correction was applied to improve on the raw model forecasts. The forecasts were found to be skillful, with relative operating characteristic areas greater than 0.5. The bias‐corrected forecasts were found to increase skill. A heat stress warning system was then created using the forecasts. Additionally, an economic analysis was performed as an example of how probabilistic forecasts can be used to aid producers with financial decisions pertaining to weather‐related risks. Creating heat stress advisories for crops provide growers time to protect assets. Coupling crop and atmospheric models translates weather data into usable information for growers. Probabilistic canopy temperature forecasts can be used to evaluate on‐farm weather‐related risks." @default.
- W2483005842 created "2016-08-23" @default.
- W2483005842 creator A5005004766 @default.
- W2483005842 creator A5028286824 @default.
- W2483005842 creator A5031606133 @default.
- W2483005842 creator A5034463005 @default.
- W2483005842 creator A5043331365 @default.
- W2483005842 creator A5061803603 @default.
- W2483005842 date "2016-09-01" @default.
- W2483005842 modified "2023-10-18" @default.
- W2483005842 title "Predicting Heat Stress in Cotton Using Probabilistic Canopy Temperature Forecasts" @default.
- W2483005842 cites W1967922439 @default.
- W2483005842 cites W1977941533 @default.
- W2483005842 cites W1999761536 @default.
- W2483005842 cites W2003303745 @default.
- W2483005842 cites W2015851519 @default.
- W2483005842 cites W2018041438 @default.
- W2483005842 cites W2019819424 @default.
- W2483005842 cites W2036516068 @default.
- W2483005842 cites W2042974036 @default.
- W2483005842 cites W2050154176 @default.
- W2483005842 cites W2062777462 @default.
- W2483005842 cites W2072382106 @default.
- W2483005842 cites W2075438308 @default.
- W2483005842 cites W2094154579 @default.
- W2483005842 cites W2096434329 @default.
- W2483005842 cites W2112749081 @default.
- W2483005842 cites W572079721 @default.
- W2483005842 doi "https://doi.org/10.2134/agronj2015.0576" @default.
- W2483005842 hasPublicationYear "2016" @default.
- W2483005842 type Work @default.
- W2483005842 sameAs 2483005842 @default.
- W2483005842 citedByCount "6" @default.
- W2483005842 countsByYear W24830058422016 @default.
- W2483005842 countsByYear W24830058422017 @default.
- W2483005842 countsByYear W24830058422018 @default.
- W2483005842 countsByYear W24830058422019 @default.
- W2483005842 countsByYear W24830058422022 @default.
- W2483005842 countsByYear W24830058422023 @default.
- W2483005842 crossrefType "journal-article" @default.
- W2483005842 hasAuthorship W2483005842A5005004766 @default.
- W2483005842 hasAuthorship W2483005842A5028286824 @default.
- W2483005842 hasAuthorship W2483005842A5031606133 @default.
- W2483005842 hasAuthorship W2483005842A5034463005 @default.
- W2483005842 hasAuthorship W2483005842A5043331365 @default.
- W2483005842 hasAuthorship W2483005842A5061803603 @default.
- W2483005842 hasConcept C101000010 @default.
- W2483005842 hasConcept C105795698 @default.
- W2483005842 hasConcept C134121241 @default.
- W2483005842 hasConcept C153294291 @default.
- W2483005842 hasConcept C161067210 @default.
- W2483005842 hasConcept C166957645 @default.
- W2483005842 hasConcept C191897082 @default.
- W2483005842 hasConcept C192562407 @default.
- W2483005842 hasConcept C197534560 @default.
- W2483005842 hasConcept C205649164 @default.
- W2483005842 hasConcept C33923547 @default.
- W2483005842 hasConcept C39432304 @default.
- W2483005842 hasConcept C49937458 @default.
- W2483005842 hasConceptScore W2483005842C101000010 @default.
- W2483005842 hasConceptScore W2483005842C105795698 @default.
- W2483005842 hasConceptScore W2483005842C134121241 @default.
- W2483005842 hasConceptScore W2483005842C153294291 @default.
- W2483005842 hasConceptScore W2483005842C161067210 @default.
- W2483005842 hasConceptScore W2483005842C166957645 @default.
- W2483005842 hasConceptScore W2483005842C191897082 @default.
- W2483005842 hasConceptScore W2483005842C192562407 @default.
- W2483005842 hasConceptScore W2483005842C197534560 @default.
- W2483005842 hasConceptScore W2483005842C205649164 @default.
- W2483005842 hasConceptScore W2483005842C33923547 @default.
- W2483005842 hasConceptScore W2483005842C39432304 @default.
- W2483005842 hasConceptScore W2483005842C49937458 @default.
- W2483005842 hasIssue "5" @default.
- W2483005842 hasLocation W24830058421 @default.
- W2483005842 hasOpenAccess W2483005842 @default.
- W2483005842 hasPrimaryLocation W24830058421 @default.
- W2483005842 hasRelatedWork W2007539817 @default.
- W2483005842 hasRelatedWork W2017156940 @default.
- W2483005842 hasRelatedWork W2073543220 @default.
- W2483005842 hasRelatedWork W2376650867 @default.
- W2483005842 hasRelatedWork W2390933977 @default.
- W2483005842 hasRelatedWork W2975355299 @default.
- W2483005842 hasRelatedWork W3031772600 @default.
- W2483005842 hasRelatedWork W4224223762 @default.
- W2483005842 hasRelatedWork W4321995385 @default.
- W2483005842 hasRelatedWork W4324030828 @default.
- W2483005842 hasVolume "108" @default.
- W2483005842 isParatext "false" @default.
- W2483005842 isRetracted "false" @default.
- W2483005842 magId "2483005842" @default.
- W2483005842 workType "article" @default.