Matches in SemOpenAlex for { <https://semopenalex.org/work/W2483390166> ?p ?o ?g. }
- W2483390166 endingPage "97" @default.
- W2483390166 startingPage "73" @default.
- W2483390166 abstract "Healthcare systems worldwide are entering a new phase: ever-increasing quantities of complex, massively multivariate data concerning all aspects of patient care are starting to be routinely acquired and stored [1], throughout the life of a patient. This exponential growth in data quantities far outpaces the capability of clinical experts to cope, resulting in a so-called data deluge, in which the data are largely unexploited. There is huge potential for using advances in large-scale machine learning methodologies* to exploit the contents of these complex data sets by performing robust, scalable, automated inference to improve healthcare outcomes significantly by using patient-specific probabilistic models, a field in which there is little existing research [2] and which promises to develop into a new" @default.
- W2483390166 created "2016-08-23" @default.
- W2483390166 creator A5013117957 @default.
- W2483390166 creator A5017243422 @default.
- W2483390166 creator A5032954293 @default.
- W2483390166 creator A5040302008 @default.
- W2483390166 creator A5043870720 @default.
- W2483390166 creator A5055138562 @default.
- W2483390166 creator A5089282433 @default.
- W2483390166 date "2018-10-08" @default.
- W2483390166 modified "2023-09-23" @default.
- W2483390166 title "Intelligent Electronic Health Systems" @default.
- W2483390166 cites W1503398984 @default.
- W2483390166 cites W1571469712 @default.
- W2483390166 cites W1663973292 @default.
- W2483390166 cites W1746819321 @default.
- W2483390166 cites W1971396017 @default.
- W2483390166 cites W1980531127 @default.
- W2483390166 cites W1980991473 @default.
- W2483390166 cites W1982012380 @default.
- W2483390166 cites W1985749559 @default.
- W2483390166 cites W1993450187 @default.
- W2483390166 cites W2004884463 @default.
- W2483390166 cites W2029887827 @default.
- W2483390166 cites W2032866129 @default.
- W2483390166 cites W2036309921 @default.
- W2483390166 cites W2038869416 @default.
- W2483390166 cites W2045604845 @default.
- W2483390166 cites W2048870781 @default.
- W2483390166 cites W2049351696 @default.
- W2483390166 cites W2051859917 @default.
- W2483390166 cites W2051903478 @default.
- W2483390166 cites W2055666215 @default.
- W2483390166 cites W2058293203 @default.
- W2483390166 cites W2075109859 @default.
- W2483390166 cites W2099728576 @default.
- W2483390166 cites W2100802110 @default.
- W2483390166 cites W2104093114 @default.
- W2483390166 cites W2108234281 @default.
- W2483390166 cites W2115627867 @default.
- W2483390166 cites W2119595900 @default.
- W2483390166 cites W2124243126 @default.
- W2483390166 cites W2128478356 @default.
- W2483390166 cites W2133212095 @default.
- W2483390166 cites W2137413050 @default.
- W2483390166 cites W2141599838 @default.
- W2483390166 cites W2148522164 @default.
- W2483390166 cites W2154887796 @default.
- W2483390166 cites W2158416439 @default.
- W2483390166 cites W2160969485 @default.
- W2483390166 cites W2162154447 @default.
- W2483390166 cites W2163320297 @default.
- W2483390166 cites W2167503371 @default.
- W2483390166 cites W2169181523 @default.
- W2483390166 cites W2465791529 @default.
- W2483390166 cites W867453689 @default.
- W2483390166 cites W2490806914 @default.
- W2483390166 doi "https://doi.org/10.1201/9781351229067-4" @default.
- W2483390166 hasPublicationYear "2018" @default.
- W2483390166 type Work @default.
- W2483390166 sameAs 2483390166 @default.
- W2483390166 citedByCount "0" @default.
- W2483390166 crossrefType "book-chapter" @default.
- W2483390166 hasAuthorship W2483390166A5013117957 @default.
- W2483390166 hasAuthorship W2483390166A5017243422 @default.
- W2483390166 hasAuthorship W2483390166A5032954293 @default.
- W2483390166 hasAuthorship W2483390166A5040302008 @default.
- W2483390166 hasAuthorship W2483390166A5043870720 @default.
- W2483390166 hasAuthorship W2483390166A5055138562 @default.
- W2483390166 hasAuthorship W2483390166A5089282433 @default.
- W2483390166 hasConcept C154945302 @default.
- W2483390166 hasConcept C160735492 @default.
- W2483390166 hasConcept C162324750 @default.
- W2483390166 hasConcept C165696696 @default.
- W2483390166 hasConcept C202444582 @default.
- W2483390166 hasConcept C205649164 @default.
- W2483390166 hasConcept C2522767166 @default.
- W2483390166 hasConcept C2776214188 @default.
- W2483390166 hasConcept C2778755073 @default.
- W2483390166 hasConcept C33923547 @default.
- W2483390166 hasConcept C38652104 @default.
- W2483390166 hasConcept C41008148 @default.
- W2483390166 hasConcept C48044578 @default.
- W2483390166 hasConcept C49937458 @default.
- W2483390166 hasConcept C50522688 @default.
- W2483390166 hasConcept C58640448 @default.
- W2483390166 hasConcept C77088390 @default.
- W2483390166 hasConcept C9652623 @default.
- W2483390166 hasConceptScore W2483390166C154945302 @default.
- W2483390166 hasConceptScore W2483390166C160735492 @default.
- W2483390166 hasConceptScore W2483390166C162324750 @default.
- W2483390166 hasConceptScore W2483390166C165696696 @default.
- W2483390166 hasConceptScore W2483390166C202444582 @default.
- W2483390166 hasConceptScore W2483390166C205649164 @default.
- W2483390166 hasConceptScore W2483390166C2522767166 @default.
- W2483390166 hasConceptScore W2483390166C2776214188 @default.
- W2483390166 hasConceptScore W2483390166C2778755073 @default.
- W2483390166 hasConceptScore W2483390166C33923547 @default.