Matches in SemOpenAlex for { <https://semopenalex.org/work/W2483632691> ?p ?o ?g. }
- W2483632691 endingPage "191" @default.
- W2483632691 startingPage "172" @default.
- W2483632691 abstract "The Dirichlet process and its extension, the Pitman-Yor process, are stochastic processes that take probability distributions as a parameter. These processes can be stacked up to form a hierarchical nonparametric Bayesian model. In this article, we present efficient methods for the use of these processes in this hierarchical context, and apply them to latent variable models for text analytics. In particular, we propose a general framework for designing these Bayesian models, which are called topic models in the computer science community. We then propose a specific nonparametric Bayesian topic model for modelling text from social media. We focus on tweets (posts on Twitter) in this article due to their ease of access. We find that our nonparametric model performs better than existing parametric models in both goodness of fit and real world applications." @default.
- W2483632691 created "2016-08-23" @default.
- W2483632691 creator A5005792924 @default.
- W2483632691 creator A5006435999 @default.
- W2483632691 creator A5021845515 @default.
- W2483632691 creator A5041793725 @default.
- W2483632691 date "2016-11-01" @default.
- W2483632691 modified "2023-09-23" @default.
- W2483632691 title "Nonparametric Bayesian topic modelling with the hierarchical Pitman–Yor processes" @default.
- W2483632691 cites W1517555081 @default.
- W2483632691 cites W1542344929 @default.
- W2483632691 cites W1964152557 @default.
- W2483632691 cites W2011554523 @default.
- W2483632691 cites W2020999234 @default.
- W2483632691 cites W2024329736 @default.
- W2483632691 cites W2033765726 @default.
- W2483632691 cites W2037414258 @default.
- W2483632691 cites W2056760934 @default.
- W2483632691 cites W2069429561 @default.
- W2483632691 cites W2072169887 @default.
- W2483632691 cites W2075866894 @default.
- W2483632691 cites W2086830470 @default.
- W2483632691 cites W2087045154 @default.
- W2483632691 cites W2087309226 @default.
- W2483632691 cites W2106706098 @default.
- W2483632691 cites W2114350394 @default.
- W2483632691 cites W2138309709 @default.
- W2483632691 cites W2145803218 @default.
- W2483632691 cites W2150286230 @default.
- W2483632691 cites W2158266063 @default.
- W2483632691 cites W2174706414 @default.
- W2483632691 cites W4205184193 @default.
- W2483632691 cites W4211186029 @default.
- W2483632691 cites W4248681815 @default.
- W2483632691 doi "https://doi.org/10.1016/j.ijar.2016.07.007" @default.
- W2483632691 hasPublicationYear "2016" @default.
- W2483632691 type Work @default.
- W2483632691 sameAs 2483632691 @default.
- W2483632691 citedByCount "31" @default.
- W2483632691 countsByYear W24836326912017 @default.
- W2483632691 countsByYear W24836326912018 @default.
- W2483632691 countsByYear W24836326912019 @default.
- W2483632691 countsByYear W24836326912020 @default.
- W2483632691 countsByYear W24836326912021 @default.
- W2483632691 countsByYear W24836326912022 @default.
- W2483632691 crossrefType "journal-article" @default.
- W2483632691 hasAuthorship W2483632691A5005792924 @default.
- W2483632691 hasAuthorship W2483632691A5006435999 @default.
- W2483632691 hasAuthorship W2483632691A5021845515 @default.
- W2483632691 hasAuthorship W2483632691A5041793725 @default.
- W2483632691 hasBestOaLocation W24836326912 @default.
- W2483632691 hasConcept C102366305 @default.
- W2483632691 hasConcept C105795698 @default.
- W2483632691 hasConcept C107673813 @default.
- W2483632691 hasConcept C117251300 @default.
- W2483632691 hasConcept C119857082 @default.
- W2483632691 hasConcept C124101348 @default.
- W2483632691 hasConcept C134306372 @default.
- W2483632691 hasConcept C149782125 @default.
- W2483632691 hasConcept C151730666 @default.
- W2483632691 hasConcept C154945302 @default.
- W2483632691 hasConcept C160234255 @default.
- W2483632691 hasConcept C169214877 @default.
- W2483632691 hasConcept C171686336 @default.
- W2483632691 hasConcept C182310444 @default.
- W2483632691 hasConcept C2779343474 @default.
- W2483632691 hasConcept C2781280628 @default.
- W2483632691 hasConcept C33923547 @default.
- W2483632691 hasConcept C41008148 @default.
- W2483632691 hasConcept C500882744 @default.
- W2483632691 hasConcept C71983512 @default.
- W2483632691 hasConcept C86803240 @default.
- W2483632691 hasConceptScore W2483632691C102366305 @default.
- W2483632691 hasConceptScore W2483632691C105795698 @default.
- W2483632691 hasConceptScore W2483632691C107673813 @default.
- W2483632691 hasConceptScore W2483632691C117251300 @default.
- W2483632691 hasConceptScore W2483632691C119857082 @default.
- W2483632691 hasConceptScore W2483632691C124101348 @default.
- W2483632691 hasConceptScore W2483632691C134306372 @default.
- W2483632691 hasConceptScore W2483632691C149782125 @default.
- W2483632691 hasConceptScore W2483632691C151730666 @default.
- W2483632691 hasConceptScore W2483632691C154945302 @default.
- W2483632691 hasConceptScore W2483632691C160234255 @default.
- W2483632691 hasConceptScore W2483632691C169214877 @default.
- W2483632691 hasConceptScore W2483632691C171686336 @default.
- W2483632691 hasConceptScore W2483632691C182310444 @default.
- W2483632691 hasConceptScore W2483632691C2779343474 @default.
- W2483632691 hasConceptScore W2483632691C2781280628 @default.
- W2483632691 hasConceptScore W2483632691C33923547 @default.
- W2483632691 hasConceptScore W2483632691C41008148 @default.
- W2483632691 hasConceptScore W2483632691C500882744 @default.
- W2483632691 hasConceptScore W2483632691C71983512 @default.
- W2483632691 hasConceptScore W2483632691C86803240 @default.
- W2483632691 hasFunder F4320315885 @default.
- W2483632691 hasFunder F4320334704 @default.
- W2483632691 hasLocation W24836326911 @default.
- W2483632691 hasLocation W24836326912 @default.
- W2483632691 hasOpenAccess W2483632691 @default.