Matches in SemOpenAlex for { <https://semopenalex.org/work/W2483904211> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2483904211 abstract "A new design of a fault tolerant control (FTC)-based an adaptive, fixed-structure proportional-integral (PI) controller with constraints on the state vector for nonlinear discrete-time system subject to stochastic non-Gaussian disturbance is studied. The objective of the reliable control algorithm scheme is to design a control signal such that the actual probability density function (PDF) of the system is made as close as possible to a desired PDF, and make the tracking performance converge to zero, not only when all components are functional but also in case of admissible faults. A Linear Matrix Inequality (LMI)-based FTC method is presented to ensure that the fault can be estimated and compensated for. A radial basis function (RBF) neural network is used to approximate the output PDF of the system. Thus, the aim of the output PDF control will be a RBF weight control with an adaptive tuning of the basis function parameters. The key issue here is to divide the control horizon into a number of equal time intervals called batches. Within each interval, there are a fixed number of sample points. The design procedure is divided into two main algorithms, within each batch, and between any two adjacent batches. A P-type Iterative Learning Control (ILC) law is employed to tune the parameters of the RBF neural network so that the PDF tracking error decreases along with the batches. Sufficient conditions for the proposed fault tolerance are expressed as LMIs. An analysis of the ILC convergence is carried out. Finally, the effectiveness of the proposed method is demonstrated with an illustrated example." @default.
- W2483904211 created "2016-08-23" @default.
- W2483904211 creator A5003263880 @default.
- W2483904211 date "2013-01-01" @default.
- W2483904211 modified "2023-09-24" @default.
- W2483904211 title "Iterative Fault Tolerant Control for General Discrete-Time Stochastic Systems Using Output Probability Density Estimation" @default.
- W2483904211 cites W156075685 @default.
- W2483904211 cites W1651704228 @default.
- W2483904211 cites W1654016072 @default.
- W2483904211 cites W1965753273 @default.
- W2483904211 cites W1965911410 @default.
- W2483904211 cites W1982392566 @default.
- W2483904211 cites W2001123678 @default.
- W2483904211 cites W2007855078 @default.
- W2483904211 cites W2026048181 @default.
- W2483904211 cites W2032370716 @default.
- W2483904211 cites W2048162366 @default.
- W2483904211 cites W2052228940 @default.
- W2483904211 cites W2055562050 @default.
- W2483904211 cites W2060860477 @default.
- W2483904211 cites W2063732396 @default.
- W2483904211 cites W2077344837 @default.
- W2483904211 cites W2104220247 @default.
- W2483904211 cites W2109848038 @default.
- W2483904211 cites W2113864241 @default.
- W2483904211 cites W2119217410 @default.
- W2483904211 cites W2128173814 @default.
- W2483904211 cites W2140993382 @default.
- W2483904211 cites W2146396918 @default.
- W2483904211 cites W2148528837 @default.
- W2483904211 cites W2148998758 @default.
- W2483904211 cites W2164953479 @default.
- W2483904211 cites W2166611665 @default.
- W2483904211 cites W2489768403 @default.
- W2483904211 doi "https://doi.org/10.4018/978-1-4666-2095-7.ch001" @default.
- W2483904211 hasPublicationYear "2013" @default.
- W2483904211 type Work @default.
- W2483904211 sameAs 2483904211 @default.
- W2483904211 citedByCount "0" @default.
- W2483904211 crossrefType "book-chapter" @default.
- W2483904211 hasAuthorship W2483904211A5003263880 @default.
- W2483904211 hasConcept C105795698 @default.
- W2483904211 hasConcept C127413603 @default.
- W2483904211 hasConcept C154945302 @default.
- W2483904211 hasConcept C185429906 @default.
- W2483904211 hasConcept C189508267 @default.
- W2483904211 hasConcept C201995342 @default.
- W2483904211 hasConcept C2775924081 @default.
- W2483904211 hasConcept C2983703474 @default.
- W2483904211 hasConcept C33923547 @default.
- W2483904211 hasConcept C41008148 @default.
- W2483904211 hasConcept C47446073 @default.
- W2483904211 hasConcept C55689738 @default.
- W2483904211 hasConcept C96250715 @default.
- W2483904211 hasConceptScore W2483904211C105795698 @default.
- W2483904211 hasConceptScore W2483904211C127413603 @default.
- W2483904211 hasConceptScore W2483904211C154945302 @default.
- W2483904211 hasConceptScore W2483904211C185429906 @default.
- W2483904211 hasConceptScore W2483904211C189508267 @default.
- W2483904211 hasConceptScore W2483904211C201995342 @default.
- W2483904211 hasConceptScore W2483904211C2775924081 @default.
- W2483904211 hasConceptScore W2483904211C2983703474 @default.
- W2483904211 hasConceptScore W2483904211C33923547 @default.
- W2483904211 hasConceptScore W2483904211C41008148 @default.
- W2483904211 hasConceptScore W2483904211C47446073 @default.
- W2483904211 hasConceptScore W2483904211C55689738 @default.
- W2483904211 hasConceptScore W2483904211C96250715 @default.
- W2483904211 hasLocation W24839042111 @default.
- W2483904211 hasOpenAccess W2483904211 @default.
- W2483904211 hasPrimaryLocation W24839042111 @default.
- W2483904211 hasRelatedWork W1512394285 @default.
- W2483904211 hasRelatedWork W1528619270 @default.
- W2483904211 hasRelatedWork W1587224538 @default.
- W2483904211 hasRelatedWork W1965753273 @default.
- W2483904211 hasRelatedWork W1971173439 @default.
- W2483904211 hasRelatedWork W2006510689 @default.
- W2483904211 hasRelatedWork W2043541820 @default.
- W2483904211 hasRelatedWork W2044427257 @default.
- W2483904211 hasRelatedWork W2091656063 @default.
- W2483904211 hasRelatedWork W2107818613 @default.
- W2483904211 hasRelatedWork W2118952888 @default.
- W2483904211 hasRelatedWork W2139990614 @default.
- W2483904211 hasRelatedWork W2146778140 @default.
- W2483904211 hasRelatedWork W2249526458 @default.
- W2483904211 hasRelatedWork W2284707011 @default.
- W2483904211 hasRelatedWork W2498245725 @default.
- W2483904211 hasRelatedWork W2546296754 @default.
- W2483904211 hasRelatedWork W2978581621 @default.
- W2483904211 hasRelatedWork W171850996 @default.
- W2483904211 hasRelatedWork W2041147578 @default.
- W2483904211 isParatext "false" @default.
- W2483904211 isRetracted "false" @default.
- W2483904211 magId "2483904211" @default.
- W2483904211 workType "book-chapter" @default.