Matches in SemOpenAlex for { <https://semopenalex.org/work/W2484398879> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2484398879 endingPage "107" @default.
- W2484398879 startingPage "93" @default.
- W2484398879 abstract "This chapter combines the theme of propositional logic from Chapter 6 with that of principal types from Chapter 3. We saw in the Curry-Howard theorem (6B7) that the types of the closed terms are exactly the theorems of the intuitionist logic of implication: hence the principal types of these terms must form a subset of these theorems, and the very natural question arises of just how large this subset is. Do its members form an aristocracy distinguished in some structural way from the general rabble of theorems, or can every theorem be a principal type? The main result of the chapter will show that there is in fact no aristocracy: if a type τ is assignable to a closed term M but is not the principal type of M , then it is the principal type of another closed term M *. The proof will include an algorithm to construct M * when τ and M are given. To build M * an occurrence of M will be combined with some extra terms chosen from a certain carefully defined stock of “building blocks”, closed terms with known principal types; and the main aim of this chapter will be to build M * from as restricted a set of building blocks as possible. The algorithm in the earliest known proof needed full λ-calculus (Hindley 1969), but two later ones used only λI-terms as building blocks (Mints and Tammet 1991, Hirokawa 1992a §3) and another used an even more restricted class (Meyer and Bunder 1988 §9). The algorithm below will be based on the latter very economical one." @default.
- W2484398879 created "2016-08-23" @default.
- W2484398879 creator A5083039663 @default.
- W2484398879 date "1997-07-31" @default.
- W2484398879 modified "2023-09-23" @default.
- W2484398879 title "The converse principal-type algorithm" @default.
- W2484398879 doi "https://doi.org/10.1017/cbo9780511608865.008" @default.
- W2484398879 hasPublicationYear "1997" @default.
- W2484398879 type Work @default.
- W2484398879 sameAs 2484398879 @default.
- W2484398879 citedByCount "0" @default.
- W2484398879 crossrefType "book-chapter" @default.
- W2484398879 hasAuthorship W2484398879A5083039663 @default.
- W2484398879 hasConcept C11413529 @default.
- W2484398879 hasConcept C127313418 @default.
- W2484398879 hasConcept C144559511 @default.
- W2484398879 hasConcept C151730666 @default.
- W2484398879 hasConcept C2524010 @default.
- W2484398879 hasConcept C2776809875 @default.
- W2484398879 hasConcept C2777299769 @default.
- W2484398879 hasConcept C33923547 @default.
- W2484398879 hasConcept C38652104 @default.
- W2484398879 hasConcept C41008148 @default.
- W2484398879 hasConceptScore W2484398879C11413529 @default.
- W2484398879 hasConceptScore W2484398879C127313418 @default.
- W2484398879 hasConceptScore W2484398879C144559511 @default.
- W2484398879 hasConceptScore W2484398879C151730666 @default.
- W2484398879 hasConceptScore W2484398879C2524010 @default.
- W2484398879 hasConceptScore W2484398879C2776809875 @default.
- W2484398879 hasConceptScore W2484398879C2777299769 @default.
- W2484398879 hasConceptScore W2484398879C33923547 @default.
- W2484398879 hasConceptScore W2484398879C38652104 @default.
- W2484398879 hasConceptScore W2484398879C41008148 @default.
- W2484398879 hasLocation W24843988791 @default.
- W2484398879 hasOpenAccess W2484398879 @default.
- W2484398879 hasPrimaryLocation W24843988791 @default.
- W2484398879 hasRelatedWork W1997434166 @default.
- W2484398879 hasRelatedWork W2045018110 @default.
- W2484398879 hasRelatedWork W2118818460 @default.
- W2484398879 hasRelatedWork W2158568253 @default.
- W2484398879 hasRelatedWork W2330050861 @default.
- W2484398879 hasRelatedWork W2332136239 @default.
- W2484398879 hasRelatedWork W2376429153 @default.
- W2484398879 hasRelatedWork W2753380948 @default.
- W2484398879 hasRelatedWork W3100741634 @default.
- W2484398879 hasRelatedWork W4240217613 @default.
- W2484398879 isParatext "false" @default.
- W2484398879 isRetracted "false" @default.
- W2484398879 magId "2484398879" @default.
- W2484398879 workType "book-chapter" @default.