Matches in SemOpenAlex for { <https://semopenalex.org/work/W2484828606> ?p ?o ?g. }
- W2484828606 abstract "Granular matter consists of a large number of macroscopic particles; the thermal noise has no effect on the particle motion and the interactions are dissipative. These features make the granular flow very different from molecular fluids. One of the simplest situations to see the complex behavior of granular flow is the gravitational granular flow on a slope. When the inclination angle is small enough, the material stays at rest. The material begins to flow beyond a critical angle; the interaction between the particles is dominated by sustained contacts in the dense and slow flow for the small inclination angle, while the low-density rapid flow is realized for the large enough inclination, where the interaction is dominated by inelastic collisions. Understanding these flowing behaviors is a challenging problem of non-equilibrium statistical physics, not to mention its technological importance. In this thesis, we investigate the fundamental properties of gravitational granular flow. We study the steady flow and its instability by molecular dynamics simulations, and analyze the steady flow by a hydrodynamic model. Firstly, we clarify the difference between the low-density collisional flow and the dense frictional flow. In the molecular dynamics simulation of the granular material, the soft sphere model with elastic force and dissipation is often used. We examine how the dynamical behavior of steady granular flow changes in the inelastic hard sphere limit of the soft sphere model with keeping the restitution coefficient constant. We find distinctively different limiting behaviors for the two flow regimes, i.e., the collisional flow and the frictional flow. In the collisional flow, the hard sphere limit is straightforward; the number of collisions per particle per unit time converges to a finite value and the total contact time fraction with other particles goes to zero. For the frictional flow, however, we demonstrate that the collision rate diverges as a power of the particle stiffness so that the time fraction of the multiple contacts remains finite even in the hard sphere limit although the contact time fraction for binary collisions tends to zero. The second subject is to test the applicability of a continuum model to the collisional granular flow in which spinning motion of each grain is considered. In granular material, the angular momentum of the spinning motion is not always negligible because of their macroscopic size. It is known that the mean spin often deviates from the vorticity of the mean velocity near the boundary. Such a deviation may affect the flow behavior through the coupling of the particle spin and the velocity field. We apply the micropolar fluid model to the collisional flow, which is a continuum model in which the angular velocity field is considered as well as the density and the velocity fields. We demonstrate that, using a simple estimate for the parameters in the theory, the model equations quantitatively reproduce the velocity and the angular velocity profiles obtained from the numerical simulation of the rapid granular flow on a slope. Finally, we investigate the steady granular flow on a slope and its instability in the low-density regime using the molecular dynamics simulation. We determine the parameter region where the steady collisional flow is realized upon changing the inclination angle and the density of particles. Then we demonstrate that, when the system size is long enough, the collisional granular flow shows clustering instability. It is shown that the uniform flow is less stable for longer system size and/or for lower density." @default.
- W2484828606 created "2016-08-23" @default.
- W2484828606 creator A5088702916 @default.
- W2484828606 date "2003-01-01" @default.
- W2484828606 modified "2023-09-23" @default.
- W2484828606 title "Steady Flow and its Instability of Gravitational Granular Flow" @default.
- W2484828606 cites W1545154011 @default.
- W2484828606 cites W1581693385 @default.
- W2484828606 cites W1964273785 @default.
- W2484828606 cites W1973230950 @default.
- W2484828606 cites W1975046946 @default.
- W2484828606 cites W1979997221 @default.
- W2484828606 cites W1981556801 @default.
- W2484828606 cites W1989488241 @default.
- W2484828606 cites W1993005123 @default.
- W2484828606 cites W1996252984 @default.
- W2484828606 cites W1996792920 @default.
- W2484828606 cites W1998140318 @default.
- W2484828606 cites W1998345867 @default.
- W2484828606 cites W1999974348 @default.
- W2484828606 cites W2000020028 @default.
- W2484828606 cites W2002096919 @default.
- W2484828606 cites W2003568319 @default.
- W2484828606 cites W2005089921 @default.
- W2484828606 cites W2005481860 @default.
- W2484828606 cites W2009149446 @default.
- W2484828606 cites W2010887379 @default.
- W2484828606 cites W2017524521 @default.
- W2484828606 cites W2017859668 @default.
- W2484828606 cites W2019090392 @default.
- W2484828606 cites W2020478799 @default.
- W2484828606 cites W2020775766 @default.
- W2484828606 cites W2021235393 @default.
- W2484828606 cites W2022365473 @default.
- W2484828606 cites W2022598413 @default.
- W2484828606 cites W2022913297 @default.
- W2484828606 cites W2023777236 @default.
- W2484828606 cites W2030349177 @default.
- W2484828606 cites W2030809536 @default.
- W2484828606 cites W2030893630 @default.
- W2484828606 cites W2031794407 @default.
- W2484828606 cites W2037127091 @default.
- W2484828606 cites W2039461133 @default.
- W2484828606 cites W2042161232 @default.
- W2484828606 cites W2044579068 @default.
- W2484828606 cites W2045563400 @default.
- W2484828606 cites W2047644725 @default.
- W2484828606 cites W2058458162 @default.
- W2484828606 cites W2058732153 @default.
- W2484828606 cites W2058965968 @default.
- W2484828606 cites W2060743847 @default.
- W2484828606 cites W2061569586 @default.
- W2484828606 cites W2063609027 @default.
- W2484828606 cites W2064352414 @default.
- W2484828606 cites W2065268790 @default.
- W2484828606 cites W2069701868 @default.
- W2484828606 cites W2070926802 @default.
- W2484828606 cites W2072001909 @default.
- W2484828606 cites W2073775990 @default.
- W2484828606 cites W2074571268 @default.
- W2484828606 cites W2076331845 @default.
- W2484828606 cites W2077221255 @default.
- W2484828606 cites W2078186670 @default.
- W2484828606 cites W2078227308 @default.
- W2484828606 cites W2079670469 @default.
- W2484828606 cites W2082362994 @default.
- W2484828606 cites W2083052537 @default.
- W2484828606 cites W2083296735 @default.
- W2484828606 cites W2089211921 @default.
- W2484828606 cites W2089623107 @default.
- W2484828606 cites W2092255751 @default.
- W2484828606 cites W2094800197 @default.
- W2484828606 cites W2096627297 @default.
- W2484828606 cites W2096848392 @default.
- W2484828606 cites W2098230216 @default.
- W2484828606 cites W2105479026 @default.
- W2484828606 cites W2109671848 @default.
- W2484828606 cites W2112079236 @default.
- W2484828606 cites W2133072283 @default.
- W2484828606 cites W2134897675 @default.
- W2484828606 cites W2139417932 @default.
- W2484828606 cites W2141951100 @default.
- W2484828606 cites W2144465675 @default.
- W2484828606 cites W2145479290 @default.
- W2484828606 cites W2150915496 @default.
- W2484828606 cites W2155731760 @default.
- W2484828606 cites W2158022963 @default.
- W2484828606 cites W3087832340 @default.
- W2484828606 cites W3100589622 @default.
- W2484828606 cites W3101379654 @default.
- W2484828606 cites W3105442204 @default.
- W2484828606 cites W3147703473 @default.
- W2484828606 hasPublicationYear "2003" @default.
- W2484828606 type Work @default.
- W2484828606 sameAs 2484828606 @default.
- W2484828606 citedByCount "0" @default.
- W2484828606 crossrefType "journal-article" @default.
- W2484828606 hasAuthorship W2484828606A5088702916 @default.
- W2484828606 hasConcept C121332964 @default.
- W2484828606 hasConcept C121864883 @default.