Matches in SemOpenAlex for { <https://semopenalex.org/work/W2485044672> ?p ?o ?g. }
- W2485044672 endingPage "1137" @default.
- W2485044672 startingPage "1129" @default.
- W2485044672 abstract "This paper presents a novel hybrid method coupling artificial neural network (ANN) and simulated annealing (SA), called ANN/SA to predict the fraction of pyrite remaining and therefore the pyrite oxidation rate in the wastes at different depths of a coal washing pile in the Alborz Markazi Coalfield, in northeast Iran. Waste depth, oxygen mole fraction and initial pyrite content in the waste particles were used as inputs to the network. The output of the network was the amount of pyrite content remaining. An ANN/SA model with Levenberg-Marquardt algorithm and a 3-4-3-1 arrangement showed a great capability. The network was used to predict the pyrite content remaining at two trenches E and F over the study waste pile once it was trained with the field-measured data. Simulated results obtained by the ANN/SA model were very closer to the experimental data compared to the outputs of simple ANN and multivariable least squares regression methods. The correlation coefficient (R) value, by the ANN/SA model, was 0.999 for training set, and in testing stage it was 0.998 and 0.99957 for trench E and trench F respectively which shows the model prediction was quite satisfactory. The performance of the model on the training and testing data, mean squared error (MSE) and mean absolute percent error (MAPE), indicate that it has both good predictive ability and generalisation performance." @default.
- W2485044672 created "2016-08-23" @default.
- W2485044672 creator A5066951270 @default.
- W2485044672 creator A5071535336 @default.
- W2485044672 date "2016-11-01" @default.
- W2485044672 modified "2023-09-27" @default.
- W2485044672 title "Prediction of pyrite oxidation in a coal washing waste pile using a hybrid method, coupling artificial neural networks and simulated annealing (ANN/SA)" @default.
- W2485044672 cites W106890858 @default.
- W2485044672 cites W130054218 @default.
- W2485044672 cites W1544152422 @default.
- W2485044672 cites W1576204417 @default.
- W2485044672 cites W1619164700 @default.
- W2485044672 cites W19310259 @default.
- W2485044672 cites W1965887328 @default.
- W2485044672 cites W1966419894 @default.
- W2485044672 cites W1970688798 @default.
- W2485044672 cites W1975396171 @default.
- W2485044672 cites W1977011318 @default.
- W2485044672 cites W1979536006 @default.
- W2485044672 cites W1984631611 @default.
- W2485044672 cites W1985285322 @default.
- W2485044672 cites W1986295743 @default.
- W2485044672 cites W1986444726 @default.
- W2485044672 cites W1994278621 @default.
- W2485044672 cites W2003126061 @default.
- W2485044672 cites W2004962321 @default.
- W2485044672 cites W2006249021 @default.
- W2485044672 cites W2008350897 @default.
- W2485044672 cites W2011433511 @default.
- W2485044672 cites W2013143737 @default.
- W2485044672 cites W2018079017 @default.
- W2485044672 cites W2022216942 @default.
- W2485044672 cites W2022217601 @default.
- W2485044672 cites W2024060531 @default.
- W2485044672 cites W2030019584 @default.
- W2485044672 cites W2031614326 @default.
- W2485044672 cites W2040622309 @default.
- W2485044672 cites W2041427886 @default.
- W2485044672 cites W2054712097 @default.
- W2485044672 cites W2058431388 @default.
- W2485044672 cites W2060515983 @default.
- W2485044672 cites W2062068109 @default.
- W2485044672 cites W2069581547 @default.
- W2485044672 cites W2070174008 @default.
- W2485044672 cites W2070761564 @default.
- W2485044672 cites W2073050736 @default.
- W2485044672 cites W2076800691 @default.
- W2485044672 cites W2081640490 @default.
- W2485044672 cites W2082804269 @default.
- W2485044672 cites W2084504487 @default.
- W2485044672 cites W2086483159 @default.
- W2485044672 cites W2088978850 @default.
- W2485044672 cites W2091195129 @default.
- W2485044672 cites W2094918923 @default.
- W2485044672 cites W2110447148 @default.
- W2485044672 cites W2125113865 @default.
- W2485044672 cites W2143517130 @default.
- W2485044672 cites W2148352755 @default.
- W2485044672 cites W2157350782 @default.
- W2485044672 cites W2159616190 @default.
- W2485044672 cites W2167232759 @default.
- W2485044672 cites W2174309999 @default.
- W2485044672 cites W2232244987 @default.
- W2485044672 cites W2302515489 @default.
- W2485044672 doi "https://doi.org/10.1016/j.jclepro.2016.08.005" @default.
- W2485044672 hasPublicationYear "2016" @default.
- W2485044672 type Work @default.
- W2485044672 sameAs 2485044672 @default.
- W2485044672 citedByCount "14" @default.
- W2485044672 countsByYear W24850446722017 @default.
- W2485044672 countsByYear W24850446722018 @default.
- W2485044672 countsByYear W24850446722020 @default.
- W2485044672 countsByYear W24850446722022 @default.
- W2485044672 crossrefType "journal-article" @default.
- W2485044672 hasAuthorship W2485044672A5066951270 @default.
- W2485044672 hasAuthorship W2485044672A5071535336 @default.
- W2485044672 hasConcept C105795698 @default.
- W2485044672 hasConcept C11413529 @default.
- W2485044672 hasConcept C126980161 @default.
- W2485044672 hasConcept C127313418 @default.
- W2485044672 hasConcept C127413603 @default.
- W2485044672 hasConcept C139945424 @default.
- W2485044672 hasConcept C150217764 @default.
- W2485044672 hasConcept C154945302 @default.
- W2485044672 hasConcept C199289684 @default.
- W2485044672 hasConcept C22354355 @default.
- W2485044672 hasConcept C2776062231 @default.
- W2485044672 hasConcept C2780092901 @default.
- W2485044672 hasConcept C33923547 @default.
- W2485044672 hasConcept C41008148 @default.
- W2485044672 hasConcept C50644808 @default.
- W2485044672 hasConcept C518851703 @default.
- W2485044672 hasConcept C548081761 @default.
- W2485044672 hasConceptScore W2485044672C105795698 @default.
- W2485044672 hasConceptScore W2485044672C11413529 @default.
- W2485044672 hasConceptScore W2485044672C126980161 @default.
- W2485044672 hasConceptScore W2485044672C127313418 @default.
- W2485044672 hasConceptScore W2485044672C127413603 @default.