Matches in SemOpenAlex for { <https://semopenalex.org/work/W2485202016> ?p ?o ?g. }
- W2485202016 endingPage "56" @default.
- W2485202016 startingPage "44" @default.
- W2485202016 abstract "Carbon accounting is at the heart of efforts to mitigate the effects of climate change. One approach for estimating population parameters for live tree stem carbon entails three primary steps: (1) construction of an individual tree, allometric carbon model, (2) application of the model to tree-level data for a probability sample of plots, and (3) use of a probability-based (design-based) estimator of mean carbon per unit area for a population of interest. Compliance with the IPCC good practice guidance requires satisfaction of two criteria, one related to minimizing bias and one related to minimizing uncertainty. For this carbon estimation procedure, the portion of uncertainty attributed to the variance of the probability-based estimator of the population mean using the plot-level predictions is usually correctly estimated, but the portion attributed to the variance of the allometric model estimator is usually ignored. The result is that the total variance of the population mean estimator cannot be asserted to comply with the IPCC good practice criteria because not only is it not minimized, it is not even correctly estimated. Within the framework of what is coming to be characterized as hybrid inference, model-based inferential methods were used to estimate the variance of the tree-level allometric model estimator which was then propagated through to the variance of the probability-based estimator of mean carbon per unit area. This combined estimator, consisting of a model-based estimator used to predict a variable for a probability sample of a population followed by a probability-estimator of the population total or mean using the sample predictions, is characterized as a hybrid estimator. For this study, two probability-based estimators of the mean were considered, simple random sampling estimators and model-assisted regression estimators that used airborne laser scanning (ALS) data as auxiliary information. The variance of the allometric model estimator incorporated variances of distributions of diameter and height measurement errors, covariances of model parameter estimators, model residual variance, and variances of distributions of wood densities and carbon content proportions. The novel features of the study included the hybrid inferential framework, consideration of six sources of uncertainty including the variances of distributions of wood densities and carbon content proportions, use of ALS data with model-assisted regression estimators of the population mean, and use of confidence intervals for the population mean as the basis for comparisons rather than intermediate products such as model prediction accuracy. The primary conclusions were that the variance of the allometric model estimator was negligible or marginally negligible relative to the variance of the probability estimator when using species-specific allometric models and simple random sampling estimators, but non-negligible when using species-specific models and model-assisted regression estimators and when using a non-specific model with either estimator." @default.
- W2485202016 created "2016-08-23" @default.
- W2485202016 creator A5008085187 @default.
- W2485202016 creator A5014708668 @default.
- W2485202016 creator A5018412035 @default.
- W2485202016 creator A5040115327 @default.
- W2485202016 creator A5040480498 @default.
- W2485202016 creator A5063749787 @default.
- W2485202016 date "2016-10-01" @default.
- W2485202016 modified "2023-10-14" @default.
- W2485202016 title "Hybrid estimators for mean aboveground carbon per unit area" @default.
- W2485202016 cites W1527011892 @default.
- W2485202016 cites W1555786313 @default.
- W2485202016 cites W1745631633 @default.
- W2485202016 cites W1774521583 @default.
- W2485202016 cites W1834931997 @default.
- W2485202016 cites W1858668302 @default.
- W2485202016 cites W1975413319 @default.
- W2485202016 cites W1975521562 @default.
- W2485202016 cites W1998288654 @default.
- W2485202016 cites W1999222616 @default.
- W2485202016 cites W2012260782 @default.
- W2485202016 cites W2021474216 @default.
- W2485202016 cites W2026008421 @default.
- W2485202016 cites W2028440779 @default.
- W2485202016 cites W2033525272 @default.
- W2485202016 cites W2046735139 @default.
- W2485202016 cites W2060882825 @default.
- W2485202016 cites W2061427081 @default.
- W2485202016 cites W2065037437 @default.
- W2485202016 cites W2070294178 @default.
- W2485202016 cites W2075955705 @default.
- W2485202016 cites W2085452818 @default.
- W2485202016 cites W2093830434 @default.
- W2485202016 cites W2097740558 @default.
- W2485202016 cites W2107202259 @default.
- W2485202016 cites W2107620039 @default.
- W2485202016 cites W2109141880 @default.
- W2485202016 cites W2113521108 @default.
- W2485202016 cites W2120634709 @default.
- W2485202016 cites W2134608924 @default.
- W2485202016 cites W2137882837 @default.
- W2485202016 cites W2147886550 @default.
- W2485202016 cites W2150588208 @default.
- W2485202016 cites W2158155342 @default.
- W2485202016 cites W2161136770 @default.
- W2485202016 cites W2166753458 @default.
- W2485202016 cites W2184594376 @default.
- W2485202016 cites W2288393565 @default.
- W2485202016 cites W2313455935 @default.
- W2485202016 cites W2320934521 @default.
- W2485202016 cites W250962928 @default.
- W2485202016 doi "https://doi.org/10.1016/j.foreco.2016.07.007" @default.
- W2485202016 hasPublicationYear "2016" @default.
- W2485202016 type Work @default.
- W2485202016 sameAs 2485202016 @default.
- W2485202016 citedByCount "57" @default.
- W2485202016 countsByYear W24852020162016 @default.
- W2485202016 countsByYear W24852020162017 @default.
- W2485202016 countsByYear W24852020162018 @default.
- W2485202016 countsByYear W24852020162019 @default.
- W2485202016 countsByYear W24852020162020 @default.
- W2485202016 countsByYear W24852020162021 @default.
- W2485202016 countsByYear W24852020162022 @default.
- W2485202016 countsByYear W24852020162023 @default.
- W2485202016 crossrefType "journal-article" @default.
- W2485202016 hasAuthorship W2485202016A5008085187 @default.
- W2485202016 hasAuthorship W2485202016A5014708668 @default.
- W2485202016 hasAuthorship W2485202016A5018412035 @default.
- W2485202016 hasAuthorship W2485202016A5040115327 @default.
- W2485202016 hasAuthorship W2485202016A5040480498 @default.
- W2485202016 hasAuthorship W2485202016A5063749787 @default.
- W2485202016 hasConcept C105795698 @default.
- W2485202016 hasConcept C121955636 @default.
- W2485202016 hasConcept C139945424 @default.
- W2485202016 hasConcept C144024400 @default.
- W2485202016 hasConcept C144133560 @default.
- W2485202016 hasConcept C149782125 @default.
- W2485202016 hasConcept C149923435 @default.
- W2485202016 hasConcept C165646398 @default.
- W2485202016 hasConcept C185429906 @default.
- W2485202016 hasConcept C191393472 @default.
- W2485202016 hasConcept C196083921 @default.
- W2485202016 hasConcept C2908647359 @default.
- W2485202016 hasConcept C33923547 @default.
- W2485202016 hasConceptScore W2485202016C105795698 @default.
- W2485202016 hasConceptScore W2485202016C121955636 @default.
- W2485202016 hasConceptScore W2485202016C139945424 @default.
- W2485202016 hasConceptScore W2485202016C144024400 @default.
- W2485202016 hasConceptScore W2485202016C144133560 @default.
- W2485202016 hasConceptScore W2485202016C149782125 @default.
- W2485202016 hasConceptScore W2485202016C149923435 @default.
- W2485202016 hasConceptScore W2485202016C165646398 @default.
- W2485202016 hasConceptScore W2485202016C185429906 @default.
- W2485202016 hasConceptScore W2485202016C191393472 @default.
- W2485202016 hasConceptScore W2485202016C196083921 @default.
- W2485202016 hasConceptScore W2485202016C2908647359 @default.
- W2485202016 hasConceptScore W2485202016C33923547 @default.