Matches in SemOpenAlex for { <https://semopenalex.org/work/W2485471811> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2485471811 endingPage "103" @default.
- W2485471811 startingPage "89" @default.
- W2485471811 abstract "Pathway determination is an important process in vision-based navigation. The pathway is very difficult to determine simply using 2D image processing, because fields are often infested with weeds, and images contain shadows, illumination variation, irregular backgrounds and other unexpected noise. Stereo vision techniques can be used to locate the spatial positions of crop rows for pathway determination. However, the stereo matching of field images is generally time-consuming and insufficiently accurate. To solve this problem, a multi-crop-row detection algorithm based on binocular vision is proposed in this paper. The algorithm is composed of the modules of image preprocessing, stereo matching and centreline detection of multiple crop rows. An accurate stereo matching method was put forward to locate the 3D position of crop rows based on the rank transformation, Harris detector and random sample consensus methods. A new method for detecting the centrelines of multiple crop rows was proposed according to their spatial distribution. The proposed algorithm was validated by comparative experiments. Regarding the proposed algorithm in situations without turnrows, the correct detection rate is greater than 92.78%; for the average deviation angle, the absolute average value is less than 1.05°, and the average standard deviation is less than 3.66°; for the processing time, the average value is less than 634 ms, and the average standard deviation is less than 101 ms. The results indicate that the proposed algorithm can satisfy the requirements of accuracy and real-time execution in field operation." @default.
- W2485471811 created "2016-08-23" @default.
- W2485471811 creator A5028140724 @default.
- W2485471811 creator A5032923032 @default.
- W2485471811 creator A5043872234 @default.
- W2485471811 creator A5072156280 @default.
- W2485471811 creator A5075818716 @default.
- W2485471811 date "2016-10-01" @default.
- W2485471811 modified "2023-10-02" @default.
- W2485471811 title "Multi-crop-row detection algorithm based on binocular vision" @default.
- W2485471811 cites W1973700570 @default.
- W2485471811 cites W1976044339 @default.
- W2485471811 cites W1976847732 @default.
- W2485471811 cites W1976977979 @default.
- W2485471811 cites W1986785016 @default.
- W2485471811 cites W2008665443 @default.
- W2485471811 cites W2009953720 @default.
- W2485471811 cites W2012365210 @default.
- W2485471811 cites W2026664397 @default.
- W2485471811 cites W2031158160 @default.
- W2485471811 cites W2041127609 @default.
- W2485471811 cites W2042108112 @default.
- W2485471811 cites W2064245748 @default.
- W2485471811 cites W2065979625 @default.
- W2485471811 cites W2068815075 @default.
- W2485471811 cites W2070726202 @default.
- W2485471811 cites W2073157127 @default.
- W2485471811 cites W2075809231 @default.
- W2485471811 cites W2085261163 @default.
- W2485471811 cites W2091745481 @default.
- W2485471811 cites W2107848664 @default.
- W2485471811 cites W2168353817 @default.
- W2485471811 cites W4249965920 @default.
- W2485471811 doi "https://doi.org/10.1016/j.biosystemseng.2016.07.009" @default.
- W2485471811 hasPublicationYear "2016" @default.
- W2485471811 type Work @default.
- W2485471811 sameAs 2485471811 @default.
- W2485471811 citedByCount "32" @default.
- W2485471811 countsByYear W24854718112018 @default.
- W2485471811 countsByYear W24854718112019 @default.
- W2485471811 countsByYear W24854718112020 @default.
- W2485471811 countsByYear W24854718112021 @default.
- W2485471811 countsByYear W24854718112022 @default.
- W2485471811 countsByYear W24854718112023 @default.
- W2485471811 crossrefType "journal-article" @default.
- W2485471811 hasAuthorship W2485471811A5028140724 @default.
- W2485471811 hasAuthorship W2485471811A5032923032 @default.
- W2485471811 hasAuthorship W2485471811A5043872234 @default.
- W2485471811 hasAuthorship W2485471811A5072156280 @default.
- W2485471811 hasAuthorship W2485471811A5075818716 @default.
- W2485471811 hasConcept C11413529 @default.
- W2485471811 hasConcept C121958486 @default.
- W2485471811 hasConcept C137580998 @default.
- W2485471811 hasConcept C154945302 @default.
- W2485471811 hasConcept C31972630 @default.
- W2485471811 hasConcept C41008148 @default.
- W2485471811 hasConcept C6557445 @default.
- W2485471811 hasConcept C86803240 @default.
- W2485471811 hasConceptScore W2485471811C11413529 @default.
- W2485471811 hasConceptScore W2485471811C121958486 @default.
- W2485471811 hasConceptScore W2485471811C137580998 @default.
- W2485471811 hasConceptScore W2485471811C154945302 @default.
- W2485471811 hasConceptScore W2485471811C31972630 @default.
- W2485471811 hasConceptScore W2485471811C41008148 @default.
- W2485471811 hasConceptScore W2485471811C6557445 @default.
- W2485471811 hasConceptScore W2485471811C86803240 @default.
- W2485471811 hasLocation W24854718111 @default.
- W2485471811 hasOpenAccess W2485471811 @default.
- W2485471811 hasPrimaryLocation W24854718111 @default.
- W2485471811 hasRelatedWork W2053579601 @default.
- W2485471811 hasRelatedWork W2114267838 @default.
- W2485471811 hasRelatedWork W2296170454 @default.
- W2485471811 hasRelatedWork W2347786302 @default.
- W2485471811 hasRelatedWork W2365813628 @default.
- W2485471811 hasRelatedWork W2403374954 @default.
- W2485471811 hasRelatedWork W2588796123 @default.
- W2485471811 hasRelatedWork W2971852918 @default.
- W2485471811 hasRelatedWork W3184800487 @default.
- W2485471811 hasRelatedWork W4285589136 @default.
- W2485471811 hasVolume "150" @default.
- W2485471811 isParatext "false" @default.
- W2485471811 isRetracted "false" @default.
- W2485471811 magId "2485471811" @default.
- W2485471811 workType "article" @default.