Matches in SemOpenAlex for { <https://semopenalex.org/work/W2486394092> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2486394092 endingPage "385" @default.
- W2486394092 startingPage "380" @default.
- W2486394092 abstract "This study was conducted on 2049 eggs, collected from commercial white layer hybrids, with the purpose of predicting egg weight (EW) from egg quality characteristics such as shell weight (SW), albumen weight (AW), and yolk weight (YW). In the prediction of EW, ridge regression (RR), multiple linear regression (MLR), and regression tree analysis (RTM) methods were used. Predictive performance of RR and MLR methods was evaluated using the determination coefficient (R2) and variance inflation factor (VIF). R2 (%) coefficients for RR and MLR methods were found as 93.15% and 93.4% without multicollinearity problems due to very low VIF values, varying from 1 to 2, respectively. Being a visual, non-parametric analysis technique, regression tree method (RTM) based on CHAID algorithm performed a very high predictive accuracy of 99.988% in the prediction of EW. The highest EW (71.963 g) was obtained from eggs with AW > 41 g and YW > 17 g. The usability of RTM due to a very great accuracy of 99.988 (%R2) in the prediction of EW could be advised in practice in comparison with the ridge regression and multiple linear regression analysis techniques, and might be a very valuable tool with respect to quality classification of eggs produced in the poultry science." @default.
- W2486394092 created "2016-08-23" @default.
- W2486394092 creator A5000502713 @default.
- W2486394092 creator A5004131742 @default.
- W2486394092 creator A5022877423 @default.
- W2486394092 creator A5062480801 @default.
- W2486394092 date "2016-07-01" @default.
- W2486394092 modified "2023-10-09" @default.
- W2486394092 title "Prediction of egg weight from egg quality characteristics via ridge regression and regression tree methods" @default.
- W2486394092 cites W1250281685 @default.
- W2486394092 cites W1995375085 @default.
- W2486394092 cites W2059099031 @default.
- W2486394092 cites W2095255116 @default.
- W2486394092 cites W2101228374 @default.
- W2486394092 cites W2103392111 @default.
- W2486394092 cites W2152407858 @default.
- W2486394092 cites W2324239382 @default.
- W2486394092 doi "https://doi.org/10.1590/s1806-92902016000700004" @default.
- W2486394092 hasPublicationYear "2016" @default.
- W2486394092 type Work @default.
- W2486394092 sameAs 2486394092 @default.
- W2486394092 citedByCount "23" @default.
- W2486394092 countsByYear W24863940922016 @default.
- W2486394092 countsByYear W24863940922017 @default.
- W2486394092 countsByYear W24863940922018 @default.
- W2486394092 countsByYear W24863940922019 @default.
- W2486394092 countsByYear W24863940922020 @default.
- W2486394092 countsByYear W24863940922021 @default.
- W2486394092 countsByYear W24863940922022 @default.
- W2486394092 countsByYear W24863940922023 @default.
- W2486394092 crossrefType "journal-article" @default.
- W2486394092 hasAuthorship W2486394092A5000502713 @default.
- W2486394092 hasAuthorship W2486394092A5004131742 @default.
- W2486394092 hasAuthorship W2486394092A5022877423 @default.
- W2486394092 hasAuthorship W2486394092A5062480801 @default.
- W2486394092 hasBestOaLocation W24863940921 @default.
- W2486394092 hasConcept C105795698 @default.
- W2486394092 hasConcept C128990827 @default.
- W2486394092 hasConcept C152732102 @default.
- W2486394092 hasConcept C152877465 @default.
- W2486394092 hasConcept C170964787 @default.
- W2486394092 hasConcept C189285262 @default.
- W2486394092 hasConcept C33923547 @default.
- W2486394092 hasConcept C48921125 @default.
- W2486394092 hasConcept C83546350 @default.
- W2486394092 hasConceptScore W2486394092C105795698 @default.
- W2486394092 hasConceptScore W2486394092C128990827 @default.
- W2486394092 hasConceptScore W2486394092C152732102 @default.
- W2486394092 hasConceptScore W2486394092C152877465 @default.
- W2486394092 hasConceptScore W2486394092C170964787 @default.
- W2486394092 hasConceptScore W2486394092C189285262 @default.
- W2486394092 hasConceptScore W2486394092C33923547 @default.
- W2486394092 hasConceptScore W2486394092C48921125 @default.
- W2486394092 hasConceptScore W2486394092C83546350 @default.
- W2486394092 hasIssue "7" @default.
- W2486394092 hasLocation W24863940921 @default.
- W2486394092 hasLocation W24863940922 @default.
- W2486394092 hasOpenAccess W2486394092 @default.
- W2486394092 hasPrimaryLocation W24863940921 @default.
- W2486394092 hasRelatedWork W188292369 @default.
- W2486394092 hasRelatedWork W2359681738 @default.
- W2486394092 hasRelatedWork W2471082825 @default.
- W2486394092 hasRelatedWork W247449116 @default.
- W2486394092 hasRelatedWork W2942019163 @default.
- W2486394092 hasRelatedWork W2957606078 @default.
- W2486394092 hasRelatedWork W2979774498 @default.
- W2486394092 hasRelatedWork W3163084994 @default.
- W2486394092 hasRelatedWork W4313430059 @default.
- W2486394092 hasRelatedWork W288566741 @default.
- W2486394092 hasVolume "45" @default.
- W2486394092 isParatext "false" @default.
- W2486394092 isRetracted "false" @default.
- W2486394092 magId "2486394092" @default.
- W2486394092 workType "article" @default.