Matches in SemOpenAlex for { <https://semopenalex.org/work/W2486449306> ?p ?o ?g. }
- W2486449306 endingPage "554" @default.
- W2486449306 startingPage "535" @default.
- W2486449306 abstract "This chapter summarizes several spatial analytic techniques for use in criminology research. The unique nature of spatial data is discussed along with a series of techniques used in the analysis of spatially-organized areal and point data. The topics covered include exploratory spatial data analysis, the construction of the spatial weights matrix, spatial autocorrelation, spatial regression, quadrat analysis, nearest neighbor analysis, and kernel density estimation. The chapter concludes with a discussion of three critical challenges that researchers must consider for spatial analysis: the appropriate scale of analysis, the interpretation and operationalization of distance, and the choice of neighbors as a means to formalize the spatial patterns of influence." @default.
- W2486449306 created "2016-08-23" @default.
- W2486449306 creator A5026009675 @default.
- W2486449306 date "2016-04-29" @default.
- W2486449306 modified "2023-09-23" @default.
- W2486449306 title "Spatial Analysis of Crime" @default.
- W2486449306 cites W1522046631 @default.
- W2486449306 cites W1531656987 @default.
- W2486449306 cites W1606716164 @default.
- W2486449306 cites W1962391267 @default.
- W2486449306 cites W1964809608 @default.
- W2486449306 cites W1970939681 @default.
- W2486449306 cites W1973749534 @default.
- W2486449306 cites W1978460063 @default.
- W2486449306 cites W1989667904 @default.
- W2486449306 cites W1996945106 @default.
- W2486449306 cites W1996953833 @default.
- W2486449306 cites W2007249893 @default.
- W2486449306 cites W2013878718 @default.
- W2486449306 cites W2021204860 @default.
- W2486449306 cites W2028226037 @default.
- W2486449306 cites W2061952858 @default.
- W2486449306 cites W2063293061 @default.
- W2486449306 cites W2067258460 @default.
- W2486449306 cites W2071358782 @default.
- W2486449306 cites W2080977544 @default.
- W2486449306 cites W2081400318 @default.
- W2486449306 cites W2094576361 @default.
- W2486449306 cites W2096844058 @default.
- W2486449306 cites W2099822562 @default.
- W2486449306 cites W2115715042 @default.
- W2486449306 cites W2118898434 @default.
- W2486449306 cites W2126526383 @default.
- W2486449306 cites W2128076840 @default.
- W2486449306 cites W2130354913 @default.
- W2486449306 cites W2131586477 @default.
- W2486449306 cites W2132127064 @default.
- W2486449306 cites W2135552470 @default.
- W2486449306 cites W2137258537 @default.
- W2486449306 cites W2144321583 @default.
- W2486449306 cites W229810513 @default.
- W2486449306 cites W2312456753 @default.
- W2486449306 cites W2493548572 @default.
- W2486449306 cites W2496675188 @default.
- W2486449306 cites W2502413910 @default.
- W2486449306 cites W2503128472 @default.
- W2486449306 cites W4211131047 @default.
- W2486449306 cites W4249855545 @default.
- W2486449306 cites W4256053265 @default.
- W2486449306 cites W4299426141 @default.
- W2486449306 doi "https://doi.org/10.1002/9781118868799.ch24" @default.
- W2486449306 hasPublicationYear "2016" @default.
- W2486449306 type Work @default.
- W2486449306 sameAs 2486449306 @default.
- W2486449306 citedByCount "4" @default.
- W2486449306 countsByYear W24864493062019 @default.
- W2486449306 countsByYear W24864493062021 @default.
- W2486449306 crossrefType "other" @default.
- W2486449306 hasAuthorship W2486449306A5026009675 @default.
- W2486449306 hasConcept C105795698 @default.
- W2486449306 hasConcept C107394435 @default.
- W2486449306 hasConcept C111472728 @default.
- W2486449306 hasConcept C120894424 @default.
- W2486449306 hasConcept C124101348 @default.
- W2486449306 hasConcept C138885662 @default.
- W2486449306 hasConcept C144024400 @default.
- W2486449306 hasConcept C158709400 @default.
- W2486449306 hasConcept C159620131 @default.
- W2486449306 hasConcept C173727882 @default.
- W2486449306 hasConcept C185429906 @default.
- W2486449306 hasConcept C18903297 @default.
- W2486449306 hasConcept C193722300 @default.
- W2486449306 hasConcept C205649164 @default.
- W2486449306 hasConcept C2776876444 @default.
- W2486449306 hasConcept C2778091200 @default.
- W2486449306 hasConcept C33923547 @default.
- W2486449306 hasConcept C41008148 @default.
- W2486449306 hasConcept C58640448 @default.
- W2486449306 hasConcept C59822182 @default.
- W2486449306 hasConcept C62649853 @default.
- W2486449306 hasConcept C71134354 @default.
- W2486449306 hasConcept C73484699 @default.
- W2486449306 hasConcept C86803240 @default.
- W2486449306 hasConcept C9354725 @default.
- W2486449306 hasConcept C97144632 @default.
- W2486449306 hasConceptScore W2486449306C105795698 @default.
- W2486449306 hasConceptScore W2486449306C107394435 @default.
- W2486449306 hasConceptScore W2486449306C111472728 @default.
- W2486449306 hasConceptScore W2486449306C120894424 @default.
- W2486449306 hasConceptScore W2486449306C124101348 @default.
- W2486449306 hasConceptScore W2486449306C138885662 @default.
- W2486449306 hasConceptScore W2486449306C144024400 @default.
- W2486449306 hasConceptScore W2486449306C158709400 @default.
- W2486449306 hasConceptScore W2486449306C159620131 @default.
- W2486449306 hasConceptScore W2486449306C173727882 @default.
- W2486449306 hasConceptScore W2486449306C185429906 @default.
- W2486449306 hasConceptScore W2486449306C18903297 @default.
- W2486449306 hasConceptScore W2486449306C193722300 @default.