Matches in SemOpenAlex for { <https://semopenalex.org/work/W2486562154> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2486562154 abstract "Let $G$ be an abelian group of finite order $n$, and let $h$ be a positive integer. A subset $A$ of $G$ is called {em weakly $h$-incomplete}, if not every element of $G$ can be written as the sum of $h$ distinct elements of $A$; in particular, if $A$ does not contain $h$ distinct elements that add to zero, then $A$ is called {em weakly $h$-zero-sum-free}. We investigate the maximum size of weakly $h$-incomplete and weakly $h$-zero-sum-free sets in $G$, denoted by $C_h(G)$ and $Z_h(G)$, respectively. Among our results are the following: (i) If $G$ is of odd order and $(n-1)/2 leq h leq n-2$, then $C_h(G)=Z_h(G)=h+1$, unless $G$ is an elementary abelian 3-group and $h=n-3$; (ii) If $G$ is an elementary abelian 2-group and $n/2 leq h leq n-2$, then $C_h(G)=Z_h(G)=h+2$, unless $h=n-4$." @default.
- W2486562154 created "2016-08-23" @default.
- W2486562154 creator A5008742142 @default.
- W2486562154 creator A5032478509 @default.
- W2486562154 date "2016-07-19" @default.
- W2486562154 modified "2023-09-27" @default.
- W2486562154 title "On two questions about restricted sumsets in finite abelian groups" @default.
- W2486562154 cites W1974276186 @default.
- W2486562154 cites W1995047211 @default.
- W2486562154 cites W2011344064 @default.
- W2486562154 cites W2015568452 @default.
- W2486562154 cites W2040458189 @default.
- W2486562154 cites W2045081006 @default.
- W2486562154 cites W842301775 @default.
- W2486562154 hasPublicationYear "2016" @default.
- W2486562154 type Work @default.
- W2486562154 sameAs 2486562154 @default.
- W2486562154 citedByCount "0" @default.
- W2486562154 crossrefType "posted-content" @default.
- W2486562154 hasAuthorship W2486562154A5008742142 @default.
- W2486562154 hasAuthorship W2486562154A5032478509 @default.
- W2486562154 hasConcept C10138342 @default.
- W2486562154 hasConcept C114614502 @default.
- W2486562154 hasConcept C118615104 @default.
- W2486562154 hasConcept C121332964 @default.
- W2486562154 hasConcept C136170076 @default.
- W2486562154 hasConcept C138885662 @default.
- W2486562154 hasConcept C162324750 @default.
- W2486562154 hasConcept C182306322 @default.
- W2486562154 hasConcept C199360897 @default.
- W2486562154 hasConcept C2777404646 @default.
- W2486562154 hasConcept C2780813799 @default.
- W2486562154 hasConcept C2781311116 @default.
- W2486562154 hasConcept C33923547 @default.
- W2486562154 hasConcept C41008148 @default.
- W2486562154 hasConcept C41895202 @default.
- W2486562154 hasConcept C62520636 @default.
- W2486562154 hasConcept C81008192 @default.
- W2486562154 hasConcept C97137487 @default.
- W2486562154 hasConceptScore W2486562154C10138342 @default.
- W2486562154 hasConceptScore W2486562154C114614502 @default.
- W2486562154 hasConceptScore W2486562154C118615104 @default.
- W2486562154 hasConceptScore W2486562154C121332964 @default.
- W2486562154 hasConceptScore W2486562154C136170076 @default.
- W2486562154 hasConceptScore W2486562154C138885662 @default.
- W2486562154 hasConceptScore W2486562154C162324750 @default.
- W2486562154 hasConceptScore W2486562154C182306322 @default.
- W2486562154 hasConceptScore W2486562154C199360897 @default.
- W2486562154 hasConceptScore W2486562154C2777404646 @default.
- W2486562154 hasConceptScore W2486562154C2780813799 @default.
- W2486562154 hasConceptScore W2486562154C2781311116 @default.
- W2486562154 hasConceptScore W2486562154C33923547 @default.
- W2486562154 hasConceptScore W2486562154C41008148 @default.
- W2486562154 hasConceptScore W2486562154C41895202 @default.
- W2486562154 hasConceptScore W2486562154C62520636 @default.
- W2486562154 hasConceptScore W2486562154C81008192 @default.
- W2486562154 hasConceptScore W2486562154C97137487 @default.
- W2486562154 hasLocation W24865621541 @default.
- W2486562154 hasOpenAccess W2486562154 @default.
- W2486562154 hasPrimaryLocation W24865621541 @default.
- W2486562154 hasRelatedWork W160733565 @default.
- W2486562154 hasRelatedWork W1984339299 @default.
- W2486562154 hasRelatedWork W1995296546 @default.
- W2486562154 hasRelatedWork W2025304078 @default.
- W2486562154 hasRelatedWork W2042841513 @default.
- W2486562154 hasRelatedWork W2059152945 @default.
- W2486562154 hasRelatedWork W2071680251 @default.
- W2486562154 hasRelatedWork W2078261927 @default.
- W2486562154 hasRelatedWork W2082229393 @default.
- W2486562154 hasRelatedWork W2137144819 @default.
- W2486562154 hasRelatedWork W2360217020 @default.
- W2486562154 hasRelatedWork W2472141293 @default.
- W2486562154 hasRelatedWork W2949660624 @default.
- W2486562154 hasRelatedWork W2963252315 @default.
- W2486562154 hasRelatedWork W2963790843 @default.
- W2486562154 hasRelatedWork W2966312728 @default.
- W2486562154 hasRelatedWork W2968588986 @default.
- W2486562154 hasRelatedWork W2979476193 @default.
- W2486562154 hasRelatedWork W3138096041 @default.
- W2486562154 hasRelatedWork W66517995 @default.
- W2486562154 isParatext "false" @default.
- W2486562154 isRetracted "false" @default.
- W2486562154 magId "2486562154" @default.
- W2486562154 workType "article" @default.