Matches in SemOpenAlex for { <https://semopenalex.org/work/W2486694672> ?p ?o ?g. }
- W2486694672 endingPage "2694" @default.
- W2486694672 startingPage "2677" @default.
- W2486694672 abstract "Abstract Integral projection models ( IPM s) have a number of advantages over matrix‐model approaches for analyzing size‐structured population dynamics, because the latter require parameter estimates for each age or stage transition. However, IPM s still require appropriate data. Typically they are parameterized using individual‐scale relationships between body size and demographic rates, but these are not always available. We present an alternative approach for estimating demographic parameters from time series of size‐structured survey data using a Bayesian state‐space IPM ( SSIPM ). By fitting an IPM in a state‐space framework, we estimate unknown parameters and explicitly account for process and measurement error in a dataset to estimate the underlying process model dynamics. We tested our method by fitting SSIPM s to simulated data; the model fit the simulated size distributions well and estimated unknown demographic parameters accurately. We then illustrated our method using nine years of annual surveys of the density and size distribution of two fish species (blue rockfish, Sebastes mystinus , and gopher rockfish, S. carnatus ) at seven kelp forest sites in California. The SSIPM produced reasonable fits to the data, and estimated fishing rates for both species that were higher than our Bayesian prior estimates based on coast‐wide stock assessment estimates of harvest. That improvement reinforces the value of being able to estimate demographic parameters from local‐scale monitoring data. We highlight a number of key decision points in SSIPM development (e.g., open vs. closed demography, number of particles in the state‐space filter) so that users can apply the method to their own datasets." @default.
- W2486694672 created "2016-08-23" @default.
- W2486694672 creator A5015383527 @default.
- W2486694672 creator A5015586906 @default.
- W2486694672 creator A5038068274 @default.
- W2486694672 creator A5042739826 @default.
- W2486694672 creator A5053025533 @default.
- W2486694672 creator A5071749890 @default.
- W2486694672 creator A5077624039 @default.
- W2486694672 creator A5077715288 @default.
- W2486694672 creator A5085965894 @default.
- W2486694672 date "2016-09-30" @default.
- W2486694672 modified "2023-10-18" @default.
- W2486694672 title "Fitting state‐space integral projection models to size‐structured time series data to estimate unknown parameters" @default.
- W2486694672 cites W1500009688 @default.
- W2486694672 cites W1963949108 @default.
- W2486694672 cites W1964463842 @default.
- W2486694672 cites W1971459592 @default.
- W2486694672 cites W1971842859 @default.
- W2486694672 cites W1978789647 @default.
- W2486694672 cites W1982061668 @default.
- W2486694672 cites W1986775715 @default.
- W2486694672 cites W1992839610 @default.
- W2486694672 cites W1995625134 @default.
- W2486694672 cites W2004070478 @default.
- W2486694672 cites W2004637521 @default.
- W2486694672 cites W2005203455 @default.
- W2486694672 cites W2005891724 @default.
- W2486694672 cites W2012771902 @default.
- W2486694672 cites W2018534072 @default.
- W2486694672 cites W2020040166 @default.
- W2486694672 cites W2020749254 @default.
- W2486694672 cites W2026486061 @default.
- W2486694672 cites W2031457307 @default.
- W2486694672 cites W203545214 @default.
- W2486694672 cites W2044840718 @default.
- W2486694672 cites W2045717754 @default.
- W2486694672 cites W2052446507 @default.
- W2486694672 cites W2062213110 @default.
- W2486694672 cites W2065545475 @default.
- W2486694672 cites W2069388303 @default.
- W2486694672 cites W2070044130 @default.
- W2486694672 cites W2082186106 @default.
- W2486694672 cites W2083096831 @default.
- W2486694672 cites W2085848974 @default.
- W2486694672 cites W2087346971 @default.
- W2486694672 cites W2089126323 @default.
- W2486694672 cites W2089142556 @default.
- W2486694672 cites W2097616685 @default.
- W2486694672 cites W2098613108 @default.
- W2486694672 cites W2103785662 @default.
- W2486694672 cites W2105934661 @default.
- W2486694672 cites W2106094790 @default.
- W2486694672 cites W2107858042 @default.
- W2486694672 cites W2114084375 @default.
- W2486694672 cites W2114350394 @default.
- W2486694672 cites W2114843949 @default.
- W2486694672 cites W2115635295 @default.
- W2486694672 cites W2123805852 @default.
- W2486694672 cites W2128614996 @default.
- W2486694672 cites W2129988505 @default.
- W2486694672 cites W2131467828 @default.
- W2486694672 cites W2149720906 @default.
- W2486694672 cites W2149723004 @default.
- W2486694672 cites W2162416311 @default.
- W2486694672 cites W2163506285 @default.
- W2486694672 cites W2166192813 @default.
- W2486694672 cites W2167819432 @default.
- W2486694672 cites W2168118118 @default.
- W2486694672 cites W2169532870 @default.
- W2486694672 cites W2288997372 @default.
- W2486694672 cites W2318933429 @default.
- W2486694672 cites W2320490456 @default.
- W2486694672 cites W2325778285 @default.
- W2486694672 cites W3099161921 @default.
- W2486694672 cites W4214571706 @default.
- W2486694672 cites W4231517135 @default.
- W2486694672 cites W4233532894 @default.
- W2486694672 cites W621546036 @default.
- W2486694672 doi "https://doi.org/10.1002/eap.1398" @default.
- W2486694672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27907261" @default.
- W2486694672 hasPublicationYear "2016" @default.
- W2486694672 type Work @default.
- W2486694672 sameAs 2486694672 @default.
- W2486694672 citedByCount "18" @default.
- W2486694672 countsByYear W24866946722018 @default.
- W2486694672 countsByYear W24866946722019 @default.
- W2486694672 countsByYear W24866946722020 @default.
- W2486694672 countsByYear W24866946722021 @default.
- W2486694672 countsByYear W24866946722022 @default.
- W2486694672 countsByYear W24866946722023 @default.
- W2486694672 crossrefType "journal-article" @default.
- W2486694672 hasAuthorship W2486694672A5015383527 @default.
- W2486694672 hasAuthorship W2486694672A5015586906 @default.
- W2486694672 hasAuthorship W2486694672A5038068274 @default.
- W2486694672 hasAuthorship W2486694672A5042739826 @default.
- W2486694672 hasAuthorship W2486694672A5053025533 @default.
- W2486694672 hasAuthorship W2486694672A5071749890 @default.