Matches in SemOpenAlex for { <https://semopenalex.org/work/W2486984610> ?p ?o ?g. }
- W2486984610 endingPage "375" @default.
- W2486984610 startingPage "315" @default.
- W2486984610 abstract "In recent years, artificial neural network (ANN) techniques have dominated the relatively new field of computer-aided diagnosis (CAD), particularly in the diagnosis of breast cancer. Most of these studies relied on a classic ANN paradigm, namely, the single-hidden-layer, fully-interconnected, feed-forward, error-back-propagation network, which used sigmoid activation functions. Although versatile and popular, this classic ANN approach has many limitations. In particular, the gradient descent technique used to train network weights is susceptible to entrapment in local minima. Furthermore, the number of hidden nodes are fixed and chosen arbitrarily. To achieve a desired level of performance, too many hidden nodes are frequently used, resulting in overfitting of the training cases, which compromises the network's ability to generalize to new cases it has not seen before.To address these limitations, the evolutionary computing (EC) paradigm was investigated as an alternative to the classic ANN paradigm. The EC paradigm is a stochastic optimization technique, consisting of a blend of evolutionary programming (EP) and evolutionary strategies (ES), which numerically addresses (but is not immune from) the problem of entrapment in local minima.Using available mammographic findings and patient history, researchers applied these techniques to the problem of predicting whether a breast lesion was benign or malignant. Mammographic findings were used because mammography is the most widely used radiologic modality for the early detection of breast cancer. However, only 15-34% of women who undergo a breast biopsy for a mammographically suspicious, nonpalpable lesion actually have breast cancer. Thus, 66-85% of the biopsies performed today could be avoided if these lesions could be classified accurately using the information from a mammogram." @default.
- W2486984610 created "2016-08-23" @default.
- W2486984610 creator A5000204633 @default.
- W2486984610 creator A5015516274 @default.
- W2486984610 creator A5036473782 @default.
- W2486984610 creator A5040192736 @default.
- W2486984610 creator A5045577110 @default.
- W2486984610 creator A5065433506 @default.
- W2486984610 creator A5081098585 @default.
- W2486984610 date "2010-03-16" @default.
- W2486984610 modified "2023-09-24" @default.
- W2486984610 title "Using Computational Intelligence for Computer-Aided Diagnosis of Screen-Film Mammograms" @default.
- W2486984610 cites W1512098439 @default.
- W2486984610 cites W1540371141 @default.
- W2486984610 cites W1563088657 @default.
- W2486984610 cites W1869391892 @default.
- W2486984610 cites W1965537434 @default.
- W2486984610 cites W1976427099 @default.
- W2486984610 cites W1978970913 @default.
- W2486984610 cites W1981103483 @default.
- W2486984610 cites W1988790447 @default.
- W2486984610 cites W1992823908 @default.
- W2486984610 cites W2004152841 @default.
- W2486984610 cites W2014134373 @default.
- W2486984610 cites W2033326122 @default.
- W2486984610 cites W2035005104 @default.
- W2486984610 cites W2044243109 @default.
- W2486984610 cites W2050383414 @default.
- W2486984610 cites W2058059827 @default.
- W2486984610 cites W2064964740 @default.
- W2486984610 cites W20683381 @default.
- W2486984610 cites W2070173579 @default.
- W2486984610 cites W2073503722 @default.
- W2486984610 cites W2073840049 @default.
- W2486984610 cites W2081824827 @default.
- W2486984610 cites W2087661061 @default.
- W2486984610 cites W2087883561 @default.
- W2486984610 cites W2088845334 @default.
- W2486984610 cites W2091003191 @default.
- W2486984610 cites W2111864650 @default.
- W2486984610 cites W2112440119 @default.
- W2486984610 cites W2112525988 @default.
- W2486984610 cites W2114985350 @default.
- W2486984610 cites W2124152802 @default.
- W2486984610 cites W2139212933 @default.
- W2486984610 cites W2139269942 @default.
- W2486984610 cites W2148603752 @default.
- W2486984610 cites W2153095534 @default.
- W2486984610 cites W2156909104 @default.
- W2486984610 cites W2162384717 @default.
- W2486984610 cites W2163842499 @default.
- W2486984610 cites W2169666757 @default.
- W2486984610 cites W2325332048 @default.
- W2486984610 cites W36040755 @default.
- W2486984610 doi "https://doi.org/10.1117/3.651880.ch10" @default.
- W2486984610 hasPublicationYear "2010" @default.
- W2486984610 type Work @default.
- W2486984610 sameAs 2486984610 @default.
- W2486984610 citedByCount "0" @default.
- W2486984610 crossrefType "book-chapter" @default.
- W2486984610 hasAuthorship W2486984610A5000204633 @default.
- W2486984610 hasAuthorship W2486984610A5015516274 @default.
- W2486984610 hasAuthorship W2486984610A5036473782 @default.
- W2486984610 hasAuthorship W2486984610A5040192736 @default.
- W2486984610 hasAuthorship W2486984610A5045577110 @default.
- W2486984610 hasAuthorship W2486984610A5065433506 @default.
- W2486984610 hasAuthorship W2486984610A5081098585 @default.
- W2486984610 hasConcept C119857082 @default.
- W2486984610 hasConcept C121608353 @default.
- W2486984610 hasConcept C126322002 @default.
- W2486984610 hasConcept C134306372 @default.
- W2486984610 hasConcept C153180895 @default.
- W2486984610 hasConcept C154945302 @default.
- W2486984610 hasConcept C186633575 @default.
- W2486984610 hasConcept C22019652 @default.
- W2486984610 hasConcept C2779549770 @default.
- W2486984610 hasConcept C2780472235 @default.
- W2486984610 hasConcept C33923547 @default.
- W2486984610 hasConcept C41008148 @default.
- W2486984610 hasConcept C50644808 @default.
- W2486984610 hasConcept C530470458 @default.
- W2486984610 hasConcept C71924100 @default.
- W2486984610 hasConcept C81388566 @default.
- W2486984610 hasConceptScore W2486984610C119857082 @default.
- W2486984610 hasConceptScore W2486984610C121608353 @default.
- W2486984610 hasConceptScore W2486984610C126322002 @default.
- W2486984610 hasConceptScore W2486984610C134306372 @default.
- W2486984610 hasConceptScore W2486984610C153180895 @default.
- W2486984610 hasConceptScore W2486984610C154945302 @default.
- W2486984610 hasConceptScore W2486984610C186633575 @default.
- W2486984610 hasConceptScore W2486984610C22019652 @default.
- W2486984610 hasConceptScore W2486984610C2779549770 @default.
- W2486984610 hasConceptScore W2486984610C2780472235 @default.
- W2486984610 hasConceptScore W2486984610C33923547 @default.
- W2486984610 hasConceptScore W2486984610C41008148 @default.
- W2486984610 hasConceptScore W2486984610C50644808 @default.
- W2486984610 hasConceptScore W2486984610C530470458 @default.
- W2486984610 hasConceptScore W2486984610C71924100 @default.