Matches in SemOpenAlex for { <https://semopenalex.org/work/W2487119530> ?p ?o ?g. }
- W2487119530 endingPage "706" @default.
- W2487119530 startingPage "693" @default.
- W2487119530 abstract "Summary The objective of this study is to develop an algorithm to accurately identify children with severe early onset childhood obesity (ages 1–5.99 years) using structured and unstructured data from the electronic health record (EHR). Childhood obesity increases risk factors for cardiovascular morbidity and vascular disease. Accurate definition of a high precision phenotype through a standardize tool is critical to the success of large-scale genomic studies and validating rare monogenic variants causing severe early onset obesity. Rule based and machine learning based algorithms were developed using structured and unstructured data from two EHR databases from Boston Children’s Hospital (BCH) and Cincinnati Children’s Hospital and Medical Center (CCHMC). Exclusion criteria including medications or comorbid diagnoses were defined. Machine learning algorithms were developed using cross-site training and testing in addition to experimenting with natural language processing features. Precision was emphasized for a high fidelity cohort. The rule-based algorithm performed the best overall, 0.895 (CCHMC) and 0.770 (BCH). The best feature set for machine learning employed Unified Medical Language System (UMLS) concept unique identifiers (CUIs), ICD-9 codes, and RxNorm codes. Detecting severe early childhood obesity is essential for the intervention potential in children at the highest long-term risk of developing comorbidities related to obesity and excluding patients with underlying pathological and non-syndromic causes of obesity assists in developing a high-precision cohort for genetic study. Further such phenotyping efforts inform future practical application in health care environments utilizing clinical decision support. Citation: Lingren T, Thaker V, Brady C, Namjou B, Kennebeck S, Bickel J, Patibandla N, Ni Y, Van Driest SL, Chen L, Roach A, Cobb B, Kirby J, Denny J, Bailey-Davis L, Williams MS, Marsolo K, Solti I, Holm IA, Harley J, Kohane IS, Savova G, Crimmins N. Developing an algorithm to detect early childhood obesity in two tertiary pediatric medical centers." @default.
- W2487119530 created "2016-08-23" @default.
- W2487119530 creator A5000782194 @default.
- W2487119530 creator A5002119222 @default.
- W2487119530 creator A5002943479 @default.
- W2487119530 creator A5004791047 @default.
- W2487119530 creator A5008924232 @default.
- W2487119530 creator A5009326615 @default.
- W2487119530 creator A5010466371 @default.
- W2487119530 creator A5013528584 @default.
- W2487119530 creator A5016427403 @default.
- W2487119530 creator A5021627780 @default.
- W2487119530 creator A5028242793 @default.
- W2487119530 creator A5032041753 @default.
- W2487119530 creator A5041194209 @default.
- W2487119530 creator A5045469950 @default.
- W2487119530 creator A5061226924 @default.
- W2487119530 creator A5062373822 @default.
- W2487119530 creator A5070908224 @default.
- W2487119530 creator A5077052550 @default.
- W2487119530 creator A5078418877 @default.
- W2487119530 creator A5086205928 @default.
- W2487119530 creator A5087026299 @default.
- W2487119530 creator A5087865794 @default.
- W2487119530 creator A5088509061 @default.
- W2487119530 date "2016-07-01" @default.
- W2487119530 modified "2023-10-01" @default.
- W2487119530 title "Developing an Algorithm to Detect Early Childhood Obesity in Two Tertiary Pediatric Medical Centers" @default.
- W2487119530 cites W1507447159 @default.
- W2487119530 cites W1584840122 @default.
- W2487119530 cites W1808652302 @default.
- W2487119530 cites W1912036160 @default.
- W2487119530 cites W1971640630 @default.
- W2487119530 cites W1993068388 @default.
- W2487119530 cites W1994771098 @default.
- W2487119530 cites W1996443199 @default.
- W2487119530 cites W2004910511 @default.
- W2487119530 cites W2008998978 @default.
- W2487119530 cites W2012642826 @default.
- W2487119530 cites W2016104730 @default.
- W2487119530 cites W2023649321 @default.
- W2487119530 cites W2026859435 @default.
- W2487119530 cites W2038152972 @default.
- W2487119530 cites W2042181529 @default.
- W2487119530 cites W2057913811 @default.
- W2487119530 cites W2059221613 @default.
- W2487119530 cites W2059459859 @default.
- W2487119530 cites W2061006706 @default.
- W2487119530 cites W2095731515 @default.
- W2487119530 cites W2099119910 @default.
- W2487119530 cites W2099920207 @default.
- W2487119530 cites W2105714645 @default.
- W2487119530 cites W2107832644 @default.
- W2487119530 cites W2113952938 @default.
- W2487119530 cites W2114299351 @default.
- W2487119530 cites W2121920862 @default.
- W2487119530 cites W2126829391 @default.
- W2487119530 cites W2129854581 @default.
- W2487119530 cites W2130113732 @default.
- W2487119530 cites W2133990480 @default.
- W2487119530 cites W2146031253 @default.
- W2487119530 cites W2151068025 @default.
- W2487119530 cites W2170322236 @default.
- W2487119530 cites W2319361543 @default.
- W2487119530 doi "https://doi.org/10.4338/aci-2016-01-ra-0015" @default.
- W2487119530 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5052543" @default.
- W2487119530 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27452794" @default.
- W2487119530 hasPublicationYear "2016" @default.
- W2487119530 type Work @default.
- W2487119530 sameAs 2487119530 @default.
- W2487119530 citedByCount "36" @default.
- W2487119530 countsByYear W24871195302016 @default.
- W2487119530 countsByYear W24871195302017 @default.
- W2487119530 countsByYear W24871195302018 @default.
- W2487119530 countsByYear W24871195302019 @default.
- W2487119530 countsByYear W24871195302020 @default.
- W2487119530 countsByYear W24871195302021 @default.
- W2487119530 countsByYear W24871195302022 @default.
- W2487119530 countsByYear W24871195302023 @default.
- W2487119530 crossrefType "journal-article" @default.
- W2487119530 hasAuthorship W2487119530A5000782194 @default.
- W2487119530 hasAuthorship W2487119530A5002119222 @default.
- W2487119530 hasAuthorship W2487119530A5002943479 @default.
- W2487119530 hasAuthorship W2487119530A5004791047 @default.
- W2487119530 hasAuthorship W2487119530A5008924232 @default.
- W2487119530 hasAuthorship W2487119530A5009326615 @default.
- W2487119530 hasAuthorship W2487119530A5010466371 @default.
- W2487119530 hasAuthorship W2487119530A5013528584 @default.
- W2487119530 hasAuthorship W2487119530A5016427403 @default.
- W2487119530 hasAuthorship W2487119530A5021627780 @default.
- W2487119530 hasAuthorship W2487119530A5028242793 @default.
- W2487119530 hasAuthorship W2487119530A5032041753 @default.
- W2487119530 hasAuthorship W2487119530A5041194209 @default.
- W2487119530 hasAuthorship W2487119530A5045469950 @default.
- W2487119530 hasAuthorship W2487119530A5061226924 @default.
- W2487119530 hasAuthorship W2487119530A5062373822 @default.
- W2487119530 hasAuthorship W2487119530A5070908224 @default.
- W2487119530 hasAuthorship W2487119530A5077052550 @default.