Matches in SemOpenAlex for { <https://semopenalex.org/work/W2487698533> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2487698533 endingPage "254" @default.
- W2487698533 startingPage "236" @default.
- W2487698533 abstract "Abstract In this paper we survey the connection of certain infinite-dimensional Lie algebras, including twisted and untwisted affine Lie algebras, toroidal Lie algebras and quantum torus Lie algebras, with vertex algebras. Introduction Vertex (operator) algebras are a new class of algebraic structures and they have deep connections with numerous fields. In mathematics, vertex algebras have been a vibrant research area. On the other hand, as the algebraic counterpart of chiral algebras, vertex operator algebras together with their representations provide a solid foundation for the study of conformal field theory in physics. Though vertex algebras are highly non-classical, they have connections with classical algebras such as Lie algebras, associative algebras and groups. In particular, vertex algebras are often constructed and studied by using classical (infinite-dimensional) Lie algebras. For example, those vertex operator algebras associated to (untwisted) affine Kac-Moody Lie algebras (including infinite-dimension Heisenberg Lie algebras) and the Virasoro Lie algebra (cf. [FZ], [DL], [Li1], [LL]) are among the important examples. These two families of vertex operator algebras underline the algebraic study of the physical Wess-Zumino-Novikov-Witten model and the minimal models in conformal field theory, respectively. On the other hand, twisted affine Lie algebras (see [K1]) can be also associated with vertex operator algebras in terms of twisted modules (see [FLM], [Li2]). In the theory of Lie algebras, by generalizing the loop-realization of untwisted affine Lie algebras, one has toroidal Lie algebras, which are perfect central extensions of multi-loop Lie algebras." @default.
- W2487698533 created "2016-08-23" @default.
- W2487698533 creator A5029851897 @default.
- W2487698533 date "2010-07-01" @default.
- W2487698533 modified "2023-09-25" @default.
- W2487698533 title "On the Connection of Certain Lie Algebras with Vertex Algebras" @default.
- W2487698533 doi "https://doi.org/10.1017/cbo9780511730054.012" @default.
- W2487698533 hasPublicationYear "2010" @default.
- W2487698533 type Work @default.
- W2487698533 sameAs 2487698533 @default.
- W2487698533 citedByCount "0" @default.
- W2487698533 crossrefType "book-chapter" @default.
- W2487698533 hasAuthorship W2487698533A5029851897 @default.
- W2487698533 hasConcept C100376341 @default.
- W2487698533 hasConcept C136119220 @default.
- W2487698533 hasConcept C14394260 @default.
- W2487698533 hasConcept C179724543 @default.
- W2487698533 hasConcept C202444582 @default.
- W2487698533 hasConcept C203254541 @default.
- W2487698533 hasConcept C203946495 @default.
- W2487698533 hasConcept C207264727 @default.
- W2487698533 hasConcept C29945619 @default.
- W2487698533 hasConcept C33923547 @default.
- W2487698533 hasConcept C51568863 @default.
- W2487698533 hasConcept C518143113 @default.
- W2487698533 hasConcept C5475112 @default.
- W2487698533 hasConcept C66411559 @default.
- W2487698533 hasConcept C73648015 @default.
- W2487698533 hasConcept C81999800 @default.
- W2487698533 hasConcept C99634282 @default.
- W2487698533 hasConceptScore W2487698533C100376341 @default.
- W2487698533 hasConceptScore W2487698533C136119220 @default.
- W2487698533 hasConceptScore W2487698533C14394260 @default.
- W2487698533 hasConceptScore W2487698533C179724543 @default.
- W2487698533 hasConceptScore W2487698533C202444582 @default.
- W2487698533 hasConceptScore W2487698533C203254541 @default.
- W2487698533 hasConceptScore W2487698533C203946495 @default.
- W2487698533 hasConceptScore W2487698533C207264727 @default.
- W2487698533 hasConceptScore W2487698533C29945619 @default.
- W2487698533 hasConceptScore W2487698533C33923547 @default.
- W2487698533 hasConceptScore W2487698533C51568863 @default.
- W2487698533 hasConceptScore W2487698533C518143113 @default.
- W2487698533 hasConceptScore W2487698533C5475112 @default.
- W2487698533 hasConceptScore W2487698533C66411559 @default.
- W2487698533 hasConceptScore W2487698533C73648015 @default.
- W2487698533 hasConceptScore W2487698533C81999800 @default.
- W2487698533 hasConceptScore W2487698533C99634282 @default.
- W2487698533 hasLocation W24876985331 @default.
- W2487698533 hasOpenAccess W2487698533 @default.
- W2487698533 hasPrimaryLocation W24876985331 @default.
- W2487698533 hasRelatedWork W1632038414 @default.
- W2487698533 hasRelatedWork W1965010315 @default.
- W2487698533 hasRelatedWork W1968504804 @default.
- W2487698533 hasRelatedWork W1978135339 @default.
- W2487698533 hasRelatedWork W1996367528 @default.
- W2487698533 hasRelatedWork W2011036362 @default.
- W2487698533 hasRelatedWork W2060960286 @default.
- W2487698533 hasRelatedWork W2061722372 @default.
- W2487698533 hasRelatedWork W2098137785 @default.
- W2487698533 hasRelatedWork W2109420070 @default.
- W2487698533 hasRelatedWork W2129612323 @default.
- W2487698533 hasRelatedWork W2136992437 @default.
- W2487698533 hasRelatedWork W2359301364 @default.
- W2487698533 hasRelatedWork W2362117816 @default.
- W2487698533 hasRelatedWork W2406130871 @default.
- W2487698533 hasRelatedWork W2800713552 @default.
- W2487698533 hasRelatedWork W2963257942 @default.
- W2487698533 hasRelatedWork W2963940206 @default.
- W2487698533 hasRelatedWork W3104078116 @default.
- W2487698533 hasRelatedWork W3144711837 @default.
- W2487698533 isParatext "false" @default.
- W2487698533 isRetracted "false" @default.
- W2487698533 magId "2487698533" @default.
- W2487698533 workType "book-chapter" @default.