Matches in SemOpenAlex for { <https://semopenalex.org/work/W2487886178> ?p ?o ?g. }
- W2487886178 endingPage "964" @default.
- W2487886178 startingPage "954" @default.
- W2487886178 abstract "Core Ideas Proximal sensors have been used for high‐detail mapping of soil C stock at field scale. Laboratory Vis‐NIR spectroscopy allowed an increase in the number of data points. Topsoil spatial variability maps were obtained using field gamma‐ray spectroscopy. Only conventional laboratory analysis was used to calibrate the model (one sample/ha). High‐precision mapping of important soil services, such as soil organic C stocks, is basic for monitoring the effects of different soil management regimes and the effectiveness of agricultural policies. Proximal soil sensing methods have been often used in the last decades to limit costs, field work, and time and to obtain reliable and accurate maps. We tested the combined use of two proximal sensors, visible–near‐infrared (Vis‐NIR) and passive γ‐ray spectrometers, to obtain highly detailed maps of C stocks of the topsoil (CS 30 , 0–30 cm) of nine pairs of fields in western Sicily using a limited number of sampling sites per field for traditional laboratory analysis (about one sample per hectare). Laboratory Vis‐NIR diffuse reflectance spectroscopy allowed the number of data points per field to be increased, at the same time reducing the costs for laboratory analysis. The predictive model had a coefficient of determination ( R 2 ) of 0.77 and an error (RMSE) of 0.67 kg m −2 . Data points predicted by Vis‐NIR on the fine earth (<2 mm) and corrected for gravel content (CS 30pred ) were interpolated within each field using geographically weighted multiple regression and two sets of covariates: (i) digital elevation model derivatives, such as elevation, slope, plan and profile curvature, and topographic wetness index; and (ii) elevation and γ‐ray total counts maps. Validation of 36 independent data points showed that the second method provided greater accuracy than the first. In particular, residual prediction deviation (RPD) showed a mean value of 2.19; however, three pairs of fields showed high error and low RPD. This methodology provides a cost‐effective tool to interpolate C stocks within arable fields, limiting laboratory analysis. The accuracy of the CS 30pred maps allows monitoring of the effects of agricultural management and/or soil erosion on the soil C pool." @default.
- W2487886178 created "2016-08-23" @default.
- W2487886178 creator A5009892152 @default.
- W2487886178 creator A5013294119 @default.
- W2487886178 creator A5016976687 @default.
- W2487886178 creator A5026900617 @default.
- W2487886178 creator A5076772978 @default.
- W2487886178 creator A5082412768 @default.
- W2487886178 date "2016-07-01" @default.
- W2487886178 modified "2023-10-16" @default.
- W2487886178 title "Field‐Scale Mapping of Soil Carbon Stock with Limited Sampling by Coupling Gamma‐Ray and Vis‐NIR Spectroscopy" @default.
- W2487886178 cites W1190219959 @default.
- W2487886178 cites W1592341820 @default.
- W2487886178 cites W1964503221 @default.
- W2487886178 cites W1970373911 @default.
- W2487886178 cites W1972764079 @default.
- W2487886178 cites W1973273412 @default.
- W2487886178 cites W1984482509 @default.
- W2487886178 cites W1993971389 @default.
- W2487886178 cites W1997703055 @default.
- W2487886178 cites W1998053851 @default.
- W2487886178 cites W2001345717 @default.
- W2487886178 cites W2004176734 @default.
- W2487886178 cites W2014228598 @default.
- W2487886178 cites W2018249408 @default.
- W2487886178 cites W2025015460 @default.
- W2487886178 cites W2027368520 @default.
- W2487886178 cites W2028523972 @default.
- W2487886178 cites W2029371308 @default.
- W2487886178 cites W2035193662 @default.
- W2487886178 cites W2041831890 @default.
- W2487886178 cites W2041859801 @default.
- W2487886178 cites W2042966968 @default.
- W2487886178 cites W2047120335 @default.
- W2487886178 cites W2052903566 @default.
- W2487886178 cites W2054146184 @default.
- W2487886178 cites W2055895932 @default.
- W2487886178 cites W2056193610 @default.
- W2487886178 cites W2063544760 @default.
- W2487886178 cites W2064259036 @default.
- W2487886178 cites W2066384929 @default.
- W2487886178 cites W2066916108 @default.
- W2487886178 cites W2079042300 @default.
- W2487886178 cites W2080395093 @default.
- W2487886178 cites W2083248507 @default.
- W2487886178 cites W2085880993 @default.
- W2487886178 cites W2089600658 @default.
- W2487886178 cites W2093939487 @default.
- W2487886178 cites W2095414472 @default.
- W2487886178 cites W2096735011 @default.
- W2487886178 cites W2097862545 @default.
- W2487886178 cites W2113328154 @default.
- W2487886178 cites W2113787666 @default.
- W2487886178 cites W214276163 @default.
- W2487886178 cites W2148393497 @default.
- W2487886178 cites W2151290922 @default.
- W2487886178 cites W2156615506 @default.
- W2487886178 cites W2161313304 @default.
- W2487886178 cites W2165993842 @default.
- W2487886178 cites W2167020326 @default.
- W2487886178 cites W2317026027 @default.
- W2487886178 cites W2481505859 @default.
- W2487886178 cites W52926496 @default.
- W2487886178 doi "https://doi.org/10.2136/sssaj2016.01.0018" @default.
- W2487886178 hasPublicationYear "2016" @default.
- W2487886178 type Work @default.
- W2487886178 sameAs 2487886178 @default.
- W2487886178 citedByCount "28" @default.
- W2487886178 countsByYear W24878861782017 @default.
- W2487886178 countsByYear W24878861782018 @default.
- W2487886178 countsByYear W24878861782019 @default.
- W2487886178 countsByYear W24878861782020 @default.
- W2487886178 countsByYear W24878861782021 @default.
- W2487886178 countsByYear W24878861782022 @default.
- W2487886178 countsByYear W24878861782023 @default.
- W2487886178 crossrefType "journal-article" @default.
- W2487886178 hasAuthorship W2487886178A5009892152 @default.
- W2487886178 hasAuthorship W2487886178A5013294119 @default.
- W2487886178 hasAuthorship W2487886178A5016976687 @default.
- W2487886178 hasAuthorship W2487886178A5026900617 @default.
- W2487886178 hasAuthorship W2487886178A5076772978 @default.
- W2487886178 hasAuthorship W2487886178A5082412768 @default.
- W2487886178 hasConcept C105795698 @default.
- W2487886178 hasConcept C120665830 @default.
- W2487886178 hasConcept C121332964 @default.
- W2487886178 hasConcept C127313418 @default.
- W2487886178 hasConcept C140779682 @default.
- W2487886178 hasConcept C159390177 @default.
- W2487886178 hasConcept C159750122 @default.
- W2487886178 hasConcept C20529654 @default.
- W2487886178 hasConcept C32891209 @default.
- W2487886178 hasConcept C33923547 @default.
- W2487886178 hasConcept C39432304 @default.
- W2487886178 hasConcept C39464130 @default.
- W2487886178 hasConcept C43571822 @default.
- W2487886178 hasConcept C50516716 @default.
- W2487886178 hasConcept C62520636 @default.
- W2487886178 hasConcept C62649853 @default.