Matches in SemOpenAlex for { <https://semopenalex.org/work/W2488027020> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2488027020 endingPage "98" @default.
- W2488027020 startingPage "69" @default.
- W2488027020 abstract "The purpose of this chapter is to summarize important results about discrete ill-posed problems, i.e., systems of equations (either square or overdetermined) derived from discretization of ill-posed problems. The main feature of these problems is that all the singular values of the coefficient matrix decay gradually to zero, with no gap anywhere in the spectrum. Whatever threshold ϵ is used in Eq. (3.3), the numerical ϵ-rank is highly ill determined, and therefore the concept of “numerical rank” is not useful for these problems.As a consequence, the regularization of discrete ill-posed problems is more complicated than merely filtering out a cluster of small singular values. For this reason, it is convenient to have a variety of mathematical tools at hand for obtaining more insight into the problem as well as the available regularization methods. Among these tools we find the filter factors, the resolution matrix, and the L-curve, all of which are described in detail below. Numerical examples that illustrate all these tools are presented in the last section of this chapter.4.1. Characteristics of Discrete Ill-Posed ProblemsFrom a strictly mathematical point of view, a finite-dimensional problem always satisfies the Picard condition (1.10), the minimum-norm solution is stable, and no regularization is required. Indeed, in a purely mathematical sense the transformation of a continuous problem to a discrete problem (“regularization by discretization”) always has a regularizing effect; see, e.g., [160, Chapter 4], [226, Chapter 3], or [227, Chapter 17]. However, this point of view does not account for the disastrous effects of rounding errors when the system is solved, due to the huge condition number of the coefficient matrix; cf. [160, Eq. (4.10)].In practical treatments of discrete ill-posed problems it is therefore necessary to incorporate some kind of regularization in the solution procedure for the discretized system Ax=b or min∥Ax−b∥2 , in order to compute a useful solution. It is also convenient to introduce the concept of a discrete Picard condition, equivalent to the Picard condition described in §4.5." @default.
- W2488027020 created "2016-08-23" @default.
- W2488027020 date "1998-01-01" @default.
- W2488027020 modified "2023-09-26" @default.
- W2488027020 title "4. Problems with Ill-Determined Rank" @default.
- W2488027020 doi "https://doi.org/10.1137/1.9780898719697.ch4" @default.
- W2488027020 hasPublicationYear "1998" @default.
- W2488027020 type Work @default.
- W2488027020 sameAs 2488027020 @default.
- W2488027020 citedByCount "3" @default.
- W2488027020 countsByYear W24880270202016 @default.
- W2488027020 countsByYear W24880270202023 @default.
- W2488027020 crossrefType "book-chapter" @default.
- W2488027020 hasConcept C106214006 @default.
- W2488027020 hasConcept C11413529 @default.
- W2488027020 hasConcept C114614502 @default.
- W2488027020 hasConcept C134306372 @default.
- W2488027020 hasConcept C154945302 @default.
- W2488027020 hasConcept C164226766 @default.
- W2488027020 hasConcept C2776135515 @default.
- W2488027020 hasConcept C28826006 @default.
- W2488027020 hasConcept C33923547 @default.
- W2488027020 hasConcept C41008148 @default.
- W2488027020 hasConcept C73000952 @default.
- W2488027020 hasConcept C81901731 @default.
- W2488027020 hasConcept C96314035 @default.
- W2488027020 hasConceptScore W2488027020C106214006 @default.
- W2488027020 hasConceptScore W2488027020C11413529 @default.
- W2488027020 hasConceptScore W2488027020C114614502 @default.
- W2488027020 hasConceptScore W2488027020C134306372 @default.
- W2488027020 hasConceptScore W2488027020C154945302 @default.
- W2488027020 hasConceptScore W2488027020C164226766 @default.
- W2488027020 hasConceptScore W2488027020C2776135515 @default.
- W2488027020 hasConceptScore W2488027020C28826006 @default.
- W2488027020 hasConceptScore W2488027020C33923547 @default.
- W2488027020 hasConceptScore W2488027020C41008148 @default.
- W2488027020 hasConceptScore W2488027020C73000952 @default.
- W2488027020 hasConceptScore W2488027020C81901731 @default.
- W2488027020 hasConceptScore W2488027020C96314035 @default.
- W2488027020 hasLocation W24880270201 @default.
- W2488027020 hasOpenAccess W2488027020 @default.
- W2488027020 hasPrimaryLocation W24880270201 @default.
- W2488027020 hasRelatedWork W1965313012 @default.
- W2488027020 hasRelatedWork W1976727549 @default.
- W2488027020 hasRelatedWork W1990718912 @default.
- W2488027020 hasRelatedWork W2040100614 @default.
- W2488027020 hasRelatedWork W2062160336 @default.
- W2488027020 hasRelatedWork W2071007942 @default.
- W2488027020 hasRelatedWork W2095220431 @default.
- W2488027020 hasRelatedWork W2614951140 @default.
- W2488027020 hasRelatedWork W2953266691 @default.
- W2488027020 hasRelatedWork W2506738488 @default.
- W2488027020 isParatext "false" @default.
- W2488027020 isRetracted "false" @default.
- W2488027020 magId "2488027020" @default.
- W2488027020 workType "book-chapter" @default.