Matches in SemOpenAlex for { <https://semopenalex.org/work/W2488162154> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2488162154 endingPage "1913" @default.
- W2488162154 startingPage "1898" @default.
- W2488162154 abstract "Small data-set learning problems are attracting more attention because of the short product lifecycles caused by the increasing pressure of global competition. Although statistical approaches and machine learning algorithms are widely applied to extract information from such data, these are basically developed on the assumption that training samples can represent the properties of the whole population. However, as the properties that the training samples contain are limited, the knowledge that the learning algorithms extract may also be deficient. Virtual sample generation approaches, used as a kind of data pretreatment, have proved their effectiveness when handling small data-set problems. By considering the relationships among attributes in the value generation procedure, this research proposes a non-parametric process to learn the trend similarities among attributes, and then uses these to estimate the corresponding ranges that attribute values may be located in when other attribute values are given. T..." @default.
- W2488162154 created "2016-08-23" @default.
- W2488162154 creator A5022263243 @default.
- W2488162154 creator A5025665440 @default.
- W2488162154 creator A5027736757 @default.
- W2488162154 creator A5028150954 @default.
- W2488162154 creator A5048326379 @default.
- W2488162154 date "2016-07-25" @default.
- W2488162154 modified "2023-10-13" @default.
- W2488162154 title "The attribute-trend-similarity method to improve learning performance for small datasets" @default.
- W2488162154 cites W1974645785 @default.
- W2488162154 cites W1985270437 @default.
- W2488162154 cites W1985655291 @default.
- W2488162154 cites W1995945562 @default.
- W2488162154 cites W2005608993 @default.
- W2488162154 cites W2010354425 @default.
- W2488162154 cites W2018258856 @default.
- W2488162154 cites W2023354766 @default.
- W2488162154 cites W2027420411 @default.
- W2488162154 cites W2046989465 @default.
- W2488162154 cites W2054895285 @default.
- W2488162154 cites W2068773963 @default.
- W2488162154 cites W2072063551 @default.
- W2488162154 cites W2075457275 @default.
- W2488162154 cites W2083758788 @default.
- W2488162154 cites W2097596981 @default.
- W2488162154 cites W2106479238 @default.
- W2488162154 cites W2122158102 @default.
- W2488162154 cites W2142197202 @default.
- W2488162154 cites W2142541696 @default.
- W2488162154 cites W2167025280 @default.
- W2488162154 cites W2285539412 @default.
- W2488162154 cites W28412257 @default.
- W2488162154 cites W4241590517 @default.
- W2488162154 doi "https://doi.org/10.1080/00207543.2016.1213447" @default.
- W2488162154 hasPublicationYear "2016" @default.
- W2488162154 type Work @default.
- W2488162154 sameAs 2488162154 @default.
- W2488162154 citedByCount "16" @default.
- W2488162154 countsByYear W24881621542018 @default.
- W2488162154 countsByYear W24881621542019 @default.
- W2488162154 countsByYear W24881621542020 @default.
- W2488162154 countsByYear W24881621542021 @default.
- W2488162154 countsByYear W24881621542022 @default.
- W2488162154 crossrefType "journal-article" @default.
- W2488162154 hasAuthorship W2488162154A5022263243 @default.
- W2488162154 hasAuthorship W2488162154A5025665440 @default.
- W2488162154 hasAuthorship W2488162154A5027736757 @default.
- W2488162154 hasAuthorship W2488162154A5028150954 @default.
- W2488162154 hasAuthorship W2488162154A5048326379 @default.
- W2488162154 hasConcept C103278499 @default.
- W2488162154 hasConcept C115961682 @default.
- W2488162154 hasConcept C119857082 @default.
- W2488162154 hasConcept C124101348 @default.
- W2488162154 hasConcept C154945302 @default.
- W2488162154 hasConcept C41008148 @default.
- W2488162154 hasConceptScore W2488162154C103278499 @default.
- W2488162154 hasConceptScore W2488162154C115961682 @default.
- W2488162154 hasConceptScore W2488162154C119857082 @default.
- W2488162154 hasConceptScore W2488162154C124101348 @default.
- W2488162154 hasConceptScore W2488162154C154945302 @default.
- W2488162154 hasConceptScore W2488162154C41008148 @default.
- W2488162154 hasIssue "7" @default.
- W2488162154 hasLocation W24881621541 @default.
- W2488162154 hasOpenAccess W2488162154 @default.
- W2488162154 hasPrimaryLocation W24881621541 @default.
- W2488162154 hasRelatedWork W2961085424 @default.
- W2488162154 hasRelatedWork W3046775127 @default.
- W2488162154 hasRelatedWork W3107602296 @default.
- W2488162154 hasRelatedWork W3170094116 @default.
- W2488162154 hasRelatedWork W3209574120 @default.
- W2488162154 hasRelatedWork W4205958290 @default.
- W2488162154 hasRelatedWork W4286629047 @default.
- W2488162154 hasRelatedWork W4306321456 @default.
- W2488162154 hasRelatedWork W4306674287 @default.
- W2488162154 hasRelatedWork W4224009465 @default.
- W2488162154 hasVolume "55" @default.
- W2488162154 isParatext "false" @default.
- W2488162154 isRetracted "false" @default.
- W2488162154 magId "2488162154" @default.
- W2488162154 workType "article" @default.