Matches in SemOpenAlex for { <https://semopenalex.org/work/W2488197043> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2488197043 abstract "Modern vehicles are equipped with numerous driver assistance and telematics functions, such as Turn-by-Turn navigation. Most of these systems rely on precise positioning of the vehicle. While Global Navigation Satellite Systems (GNSS) are available outdoors, these systems fail in indoor environments such as a car-park or a tunnel. Alternatively, the vehicle can localize itself with landmark-based positioning and internal car sensors, yet this is not only costly but also requires precise knowledge of the enclosed area. Instead, our approach is to use infrastructure-based positioning. Here, we utilize off-the shelf cameras mounted in the car-park and Vehicle-to-Infrastructure Communication to allow all vehicles to obtain an indoor position given from an infrastructure-based localization service. Our approach uses a Convolutional Neural Network (CNN) with Deep Learning to identify and localize vehicles in a car-park. We thus enable position-based Driver Assistance Systems (DAS) and telematics in an underground facility. We compare the novel Deep Learning classifier to a conventional classifier using Haar-like features." @default.
- W2488197043 created "2016-08-23" @default.
- W2488197043 creator A5004245154 @default.
- W2488197043 creator A5030848928 @default.
- W2488197043 creator A5042365259 @default.
- W2488197043 creator A5063351419 @default.
- W2488197043 creator A5083893167 @default.
- W2488197043 date "2016-06-01" @default.
- W2488197043 modified "2023-09-26" @default.
- W2488197043 title "Indoor localization of vehicles using Deep Learning" @default.
- W2488197043 cites W1958236864 @default.
- W2488197043 cites W2008549258 @default.
- W2488197043 cites W2011793599 @default.
- W2488197043 cites W2013710860 @default.
- W2488197043 cites W2022987295 @default.
- W2488197043 cites W2029001688 @default.
- W2488197043 cites W2043243646 @default.
- W2488197043 cites W2053458596 @default.
- W2488197043 cites W2065429801 @default.
- W2488197043 cites W2072249747 @default.
- W2488197043 cites W2082414281 @default.
- W2488197043 cites W2101926813 @default.
- W2488197043 cites W2108598243 @default.
- W2488197043 cites W2116932166 @default.
- W2488197043 cites W2129571831 @default.
- W2488197043 cites W2155893237 @default.
- W2488197043 cites W2962883796 @default.
- W2488197043 doi "https://doi.org/10.1109/wowmom.2016.7523569" @default.
- W2488197043 hasPublicationYear "2016" @default.
- W2488197043 type Work @default.
- W2488197043 sameAs 2488197043 @default.
- W2488197043 citedByCount "11" @default.
- W2488197043 countsByYear W24881970432017 @default.
- W2488197043 countsByYear W24881970432018 @default.
- W2488197043 countsByYear W24881970432019 @default.
- W2488197043 countsByYear W24881970432020 @default.
- W2488197043 countsByYear W24881970432021 @default.
- W2488197043 countsByYear W24881970432022 @default.
- W2488197043 crossrefType "proceedings-article" @default.
- W2488197043 hasAuthorship W2488197043A5004245154 @default.
- W2488197043 hasAuthorship W2488197043A5030848928 @default.
- W2488197043 hasAuthorship W2488197043A5042365259 @default.
- W2488197043 hasAuthorship W2488197043A5063351419 @default.
- W2488197043 hasAuthorship W2488197043A5083893167 @default.
- W2488197043 hasConcept C108583219 @default.
- W2488197043 hasConcept C14279187 @default.
- W2488197043 hasConcept C154945302 @default.
- W2488197043 hasConcept C41008148 @default.
- W2488197043 hasConcept C60229501 @default.
- W2488197043 hasConcept C76155785 @default.
- W2488197043 hasConcept C79403827 @default.
- W2488197043 hasConcept C81363708 @default.
- W2488197043 hasConcept C89074322 @default.
- W2488197043 hasConceptScore W2488197043C108583219 @default.
- W2488197043 hasConceptScore W2488197043C14279187 @default.
- W2488197043 hasConceptScore W2488197043C154945302 @default.
- W2488197043 hasConceptScore W2488197043C41008148 @default.
- W2488197043 hasConceptScore W2488197043C60229501 @default.
- W2488197043 hasConceptScore W2488197043C76155785 @default.
- W2488197043 hasConceptScore W2488197043C79403827 @default.
- W2488197043 hasConceptScore W2488197043C81363708 @default.
- W2488197043 hasConceptScore W2488197043C89074322 @default.
- W2488197043 hasLocation W24881970431 @default.
- W2488197043 hasOpenAccess W2488197043 @default.
- W2488197043 hasPrimaryLocation W24881970431 @default.
- W2488197043 hasRelatedWork W1536342557 @default.
- W2488197043 hasRelatedWork W1580596006 @default.
- W2488197043 hasRelatedWork W1838800079 @default.
- W2488197043 hasRelatedWork W1959142126 @default.
- W2488197043 hasRelatedWork W2123153532 @default.
- W2488197043 hasRelatedWork W2162148625 @default.
- W2488197043 hasRelatedWork W2167224731 @default.
- W2488197043 hasRelatedWork W2218761850 @default.
- W2488197043 hasRelatedWork W2309512289 @default.
- W2488197043 hasRelatedWork W2883171824 @default.
- W2488197043 hasRelatedWork W2955247161 @default.
- W2488197043 hasRelatedWork W2955413904 @default.
- W2488197043 hasRelatedWork W2964516204 @default.
- W2488197043 hasRelatedWork W2989617454 @default.
- W2488197043 hasRelatedWork W3015604674 @default.
- W2488197043 hasRelatedWork W3091160449 @default.
- W2488197043 hasRelatedWork W3130168513 @default.
- W2488197043 hasRelatedWork W3177017664 @default.
- W2488197043 hasRelatedWork W37507566 @default.
- W2488197043 hasRelatedWork W3108639523 @default.
- W2488197043 isParatext "false" @default.
- W2488197043 isRetracted "false" @default.
- W2488197043 magId "2488197043" @default.
- W2488197043 workType "article" @default.