Matches in SemOpenAlex for { <https://semopenalex.org/work/W2488269320> ?p ?o ?g. }
- W2488269320 endingPage "21" @default.
- W2488269320 startingPage "1" @default.
- W2488269320 abstract "The knowledge-leverage-based Takagi--Sugeno--Kang fuzzy system (KL-TSK-FS) modeling method has shown promising performance for fuzzy modeling tasks where transfer learning is required. However, the knowledge-leverage mechanism of the KL-TSK-FS can be further improved. This is because available training data in the target domain are not utilized for the learning of antecedents and the knowledge transfer mechanism from a source domain to the target domain is still too simple for the learning of consequents when a Takagi--Sugeno--Kang fuzzy system (TSK-FS) model is trained in the target domain. The proposed method, that is, the enhanced KL-TSK-FS (EKL-TSK-FS), has two knowledge-leverage strategies for enhancing the parameter learning of the TSK-FS model for the target domain using available information from the source domain. One strategy is used for the learning of antecedent parameters, while the other is for consequent parameters. It is demonstrated that the proposed EKL-TSK-FS has higher transfer learning abilities than the KL-TSK-FS. In addition, the EKL-TSK-FS has been further extended for the scene of the multisource domain." @default.
- W2488269320 created "2016-08-23" @default.
- W2488269320 creator A5003183751 @default.
- W2488269320 creator A5035595838 @default.
- W2488269320 creator A5042607110 @default.
- W2488269320 creator A5048680068 @default.
- W2488269320 creator A5068828491 @default.
- W2488269320 date "2016-07-25" @default.
- W2488269320 modified "2023-09-26" @default.
- W2488269320 title "Enhanced Knowledge-Leverage-Based TSK Fuzzy System Modeling for Inductive Transfer Learning" @default.
- W2488269320 cites W1966026565 @default.
- W2488269320 cites W1966945287 @default.
- W2488269320 cites W1971816655 @default.
- W2488269320 cites W1981658663 @default.
- W2488269320 cites W1986614398 @default.
- W2488269320 cites W1994576156 @default.
- W2488269320 cites W2013044826 @default.
- W2488269320 cites W2019207321 @default.
- W2488269320 cites W2024000733 @default.
- W2488269320 cites W2030290736 @default.
- W2488269320 cites W2050549724 @default.
- W2488269320 cites W2051464482 @default.
- W2488269320 cites W2052293776 @default.
- W2488269320 cites W2054573701 @default.
- W2488269320 cites W2062152791 @default.
- W2488269320 cites W2062179223 @default.
- W2488269320 cites W2072858690 @default.
- W2488269320 cites W2079325629 @default.
- W2488269320 cites W2080404350 @default.
- W2488269320 cites W2087977130 @default.
- W2488269320 cites W2095512713 @default.
- W2488269320 cites W2100664256 @default.
- W2488269320 cites W2114296668 @default.
- W2488269320 cites W2115403315 @default.
- W2488269320 cites W2115575686 @default.
- W2488269320 cites W2120149881 @default.
- W2488269320 cites W2122838776 @default.
- W2488269320 cites W2125070513 @default.
- W2488269320 cites W2126598074 @default.
- W2488269320 cites W2130915832 @default.
- W2488269320 cites W2142904341 @default.
- W2488269320 cites W2147101341 @default.
- W2488269320 cites W2150231499 @default.
- W2488269320 cites W2156383341 @default.
- W2488269320 cites W2161381512 @default.
- W2488269320 cites W2163345210 @default.
- W2488269320 cites W2165698076 @default.
- W2488269320 cites W3000101108 @default.
- W2488269320 cites W4256490426 @default.
- W2488269320 doi "https://doi.org/10.1145/2903725" @default.
- W2488269320 hasPublicationYear "2016" @default.
- W2488269320 type Work @default.
- W2488269320 sameAs 2488269320 @default.
- W2488269320 citedByCount "20" @default.
- W2488269320 countsByYear W24882693202017 @default.
- W2488269320 countsByYear W24882693202018 @default.
- W2488269320 countsByYear W24882693202019 @default.
- W2488269320 countsByYear W24882693202020 @default.
- W2488269320 countsByYear W24882693202021 @default.
- W2488269320 countsByYear W24882693202022 @default.
- W2488269320 countsByYear W24882693202023 @default.
- W2488269320 crossrefType "journal-article" @default.
- W2488269320 hasAuthorship W2488269320A5003183751 @default.
- W2488269320 hasAuthorship W2488269320A5035595838 @default.
- W2488269320 hasAuthorship W2488269320A5042607110 @default.
- W2488269320 hasAuthorship W2488269320A5048680068 @default.
- W2488269320 hasAuthorship W2488269320A5068828491 @default.
- W2488269320 hasBestOaLocation W24882693202 @default.
- W2488269320 hasConcept C119857082 @default.
- W2488269320 hasConcept C134306372 @default.
- W2488269320 hasConcept C150899416 @default.
- W2488269320 hasConcept C153083717 @default.
- W2488269320 hasConcept C154945302 @default.
- W2488269320 hasConcept C2776960227 @default.
- W2488269320 hasConcept C33923547 @default.
- W2488269320 hasConcept C36503486 @default.
- W2488269320 hasConcept C41008148 @default.
- W2488269320 hasConcept C56739046 @default.
- W2488269320 hasConcept C58166 @default.
- W2488269320 hasConceptScore W2488269320C119857082 @default.
- W2488269320 hasConceptScore W2488269320C134306372 @default.
- W2488269320 hasConceptScore W2488269320C150899416 @default.
- W2488269320 hasConceptScore W2488269320C153083717 @default.
- W2488269320 hasConceptScore W2488269320C154945302 @default.
- W2488269320 hasConceptScore W2488269320C2776960227 @default.
- W2488269320 hasConceptScore W2488269320C33923547 @default.
- W2488269320 hasConceptScore W2488269320C36503486 @default.
- W2488269320 hasConceptScore W2488269320C41008148 @default.
- W2488269320 hasConceptScore W2488269320C56739046 @default.
- W2488269320 hasConceptScore W2488269320C58166 @default.
- W2488269320 hasFunder F4320321001 @default.
- W2488269320 hasFunder F4320335787 @default.
- W2488269320 hasIssue "1" @default.
- W2488269320 hasLocation W24882693201 @default.
- W2488269320 hasLocation W24882693202 @default.
- W2488269320 hasOpenAccess W2488269320 @default.
- W2488269320 hasPrimaryLocation W24882693201 @default.
- W2488269320 hasRelatedWork W2949280030 @default.