Matches in SemOpenAlex for { <https://semopenalex.org/work/W2488501602> ?p ?o ?g. }
- W2488501602 abstract "We present a comprehensive performance study of a new time-domain approach for estimating the components of an observed monaural audio mixture. Unlike existing time-frequency approaches that use the product of a set of spectral templates and their corresponding activation patterns to approximate the spectrogram of the mixture, the proposed approach uses the sum of a set of convolutions of estimated activations with prelearned dictionary filters to approximate the audio mixture directly in the time domain. The approximation problem can be solved by an efficient convolutional sparse coding algorithm. The effectiveness of this approach for source separation of musical audio has been demonstrated in our prior work, but under rather restricted and controlled conditions, requiring the musical score of the mixture being informed a priori and little mismatch between the dictionary filters and the source signals. In this paper, we report an evaluation that considers wider, and more practical, experimental settings. This includes the use of an audio-based multipitch estimation algorithm to replace the musical score, and an external dataset of audio single notes to construct the dictionary filters. Our result shows that the proposed approach remains effective with a larger dictionary, and compares favorably with the state-of-the-art nonnegative matrix factorization approach. However, in the absence of the score and in the case of a small dictionary, our approach may not be better." @default.
- W2488501602 created "2016-08-23" @default.
- W2488501602 creator A5015244709 @default.
- W2488501602 creator A5038264558 @default.
- W2488501602 creator A5061291906 @default.
- W2488501602 creator A5087506923 @default.
- W2488501602 date "2016-11-01" @default.
- W2488501602 modified "2023-10-16" @default.
- W2488501602 title "Monaural Music Source Separation Using Convolutional Sparse Coding" @default.
- W2488501602 cites W107156271 @default.
- W2488501602 cites W1272306948 @default.
- W2488501602 cites W1486448290 @default.
- W2488501602 cites W1496920063 @default.
- W2488501602 cites W1513915197 @default.
- W2488501602 cites W1519783655 @default.
- W2488501602 cites W1526336542 @default.
- W2488501602 cites W1557436995 @default.
- W2488501602 cites W1580974668 @default.
- W2488501602 cites W1590102137 @default.
- W2488501602 cites W1596640533 @default.
- W2488501602 cites W1604012244 @default.
- W2488501602 cites W1607142029 @default.
- W2488501602 cites W1650958574 @default.
- W2488501602 cites W1759597718 @default.
- W2488501602 cites W1902027874 @default.
- W2488501602 cites W1970707339 @default.
- W2488501602 cites W1972715665 @default.
- W2488501602 cites W1973450013 @default.
- W2488501602 cites W1973669708 @default.
- W2488501602 cites W1974548373 @default.
- W2488501602 cites W1979654135 @default.
- W2488501602 cites W1981755271 @default.
- W2488501602 cites W1983476815 @default.
- W2488501602 cites W1986931325 @default.
- W2488501602 cites W1995212433 @default.
- W2488501602 cites W2001426554 @default.
- W2488501602 cites W2001922636 @default.
- W2488501602 cites W2017548439 @default.
- W2488501602 cites W2022086767 @default.
- W2488501602 cites W2023952145 @default.
- W2488501602 cites W2029878753 @default.
- W2488501602 cites W2039844283 @default.
- W2488501602 cites W2042390666 @default.
- W2488501602 cites W2050834445 @default.
- W2488501602 cites W2055356414 @default.
- W2488501602 cites W2065495703 @default.
- W2488501602 cites W2067200573 @default.
- W2488501602 cites W2082444737 @default.
- W2488501602 cites W2089204011 @default.
- W2488501602 cites W2096482524 @default.
- W2488501602 cites W2101593488 @default.
- W2488501602 cites W2103031592 @default.
- W2488501602 cites W2104298926 @default.
- W2488501602 cites W2105143211 @default.
- W2488501602 cites W2106582496 @default.
- W2488501602 cites W2108494558 @default.
- W2488501602 cites W2113217465 @default.
- W2488501602 cites W2117259536 @default.
- W2488501602 cites W2117289172 @default.
- W2488501602 cites W2123708030 @default.
- W2488501602 cites W2123804611 @default.
- W2488501602 cites W2124706234 @default.
- W2488501602 cites W2127851351 @default.
- W2488501602 cites W2129258718 @default.
- W2488501602 cites W2135151673 @default.
- W2488501602 cites W2138019504 @default.
- W2488501602 cites W2141061845 @default.
- W2488501602 cites W2149368536 @default.
- W2488501602 cites W2150415460 @default.
- W2488501602 cites W2155731523 @default.
- W2488501602 cites W2156379660 @default.
- W2488501602 cites W2156798212 @default.
- W2488501602 cites W2162514423 @default.
- W2488501602 cites W2163312093 @default.
- W2488501602 cites W2164278908 @default.
- W2488501602 cites W2164452299 @default.
- W2488501602 cites W216468625 @default.
- W2488501602 cites W2190662802 @default.
- W2488501602 cites W2293078015 @default.
- W2488501602 cites W2296756383 @default.
- W2488501602 cites W2396908887 @default.
- W2488501602 cites W2399467590 @default.
- W2488501602 cites W2403380333 @default.
- W2488501602 cites W2406821571 @default.
- W2488501602 cites W2516327642 @default.
- W2488501602 cites W2599181647 @default.
- W2488501602 cites W2615876157 @default.
- W2488501602 cites W2741913599 @default.
- W2488501602 cites W76597279 @default.
- W2488501602 cites W1486994328 @default.
- W2488501602 cites W2029507661 @default.
- W2488501602 doi "https://doi.org/10.1109/taslp.2016.2598323" @default.
- W2488501602 hasPublicationYear "2016" @default.
- W2488501602 type Work @default.
- W2488501602 sameAs 2488501602 @default.
- W2488501602 citedByCount "13" @default.
- W2488501602 countsByYear W24885016022018 @default.
- W2488501602 countsByYear W24885016022019 @default.
- W2488501602 countsByYear W24885016022020 @default.
- W2488501602 countsByYear W24885016022021 @default.