Matches in SemOpenAlex for { <https://semopenalex.org/work/W2488552272> ?p ?o ?g. }
- W2488552272 endingPage "623" @default.
- W2488552272 startingPage "616" @default.
- W2488552272 abstract "With the recent breakthrough success of machine learning based solutions for automatic image annotation, the availability of reference image annotations for algorithm training is one of the major bottlenecks in medical image segmentation and many other fields. Crowdsourcing has evolved as a valuable option for annotating large amounts of data while sparing the resources of experts, yet, segmentation of objects from scratch is relatively time-consuming and typically requires an initialization of the contour. The purpose of this paper is to investigate whether the concept of crowd-algorithm collaboration can be used to simultaneously (1) speed up crowd annotation and (2) improve algorithm performance based on the feedback of the crowd. Our contribution in this context is two-fold: Using benchmarking data from the MICCAI 2015 endoscopic vision challenge we show that atlas forests extended by a novel superpixel-based confidence measure are well-suited for medical instrument segmentation in laparoscopic video data. We further demonstrate that the new algorithm and the crowd can mutually benefit from each other in a collaborative annotation process. Our method can be adapted to various applications and thus holds high potential to be used for large-scale low-cost data annotation." @default.
- W2488552272 created "2016-08-23" @default.
- W2488552272 creator A5003648994 @default.
- W2488552272 creator A5007222325 @default.
- W2488552272 creator A5010048557 @default.
- W2488552272 creator A5011327623 @default.
- W2488552272 creator A5023493127 @default.
- W2488552272 creator A5027292126 @default.
- W2488552272 creator A5034437528 @default.
- W2488552272 creator A5041736676 @default.
- W2488552272 creator A5043293243 @default.
- W2488552272 creator A5056290289 @default.
- W2488552272 creator A5072157756 @default.
- W2488552272 creator A5079169749 @default.
- W2488552272 date "2016-01-01" @default.
- W2488552272 modified "2023-09-30" @default.
- W2488552272 title "Crowd-Algorithm Collaboration for Large-Scale Endoscopic Image Annotation with Confidence" @default.
- W2488552272 cites W1616833294 @default.
- W2488552272 cites W2035188186 @default.
- W2488552272 cites W2094485533 @default.
- W2488552272 cites W2168571645 @default.
- W2488552272 cites W2333815125 @default.
- W2488552272 cites W2339885376 @default.
- W2488552272 cites W2401482382 @default.
- W2488552272 cites W2911964244 @default.
- W2488552272 cites W91438110 @default.
- W2488552272 doi "https://doi.org/10.1007/978-3-319-46723-8_71" @default.
- W2488552272 hasPublicationYear "2016" @default.
- W2488552272 type Work @default.
- W2488552272 sameAs 2488552272 @default.
- W2488552272 citedByCount "26" @default.
- W2488552272 countsByYear W24885522722017 @default.
- W2488552272 countsByYear W24885522722018 @default.
- W2488552272 countsByYear W24885522722019 @default.
- W2488552272 countsByYear W24885522722020 @default.
- W2488552272 countsByYear W24885522722021 @default.
- W2488552272 countsByYear W24885522722022 @default.
- W2488552272 countsByYear W24885522722023 @default.
- W2488552272 crossrefType "book-chapter" @default.
- W2488552272 hasAuthorship W2488552272A5003648994 @default.
- W2488552272 hasAuthorship W2488552272A5007222325 @default.
- W2488552272 hasAuthorship W2488552272A5010048557 @default.
- W2488552272 hasAuthorship W2488552272A5011327623 @default.
- W2488552272 hasAuthorship W2488552272A5023493127 @default.
- W2488552272 hasAuthorship W2488552272A5027292126 @default.
- W2488552272 hasAuthorship W2488552272A5034437528 @default.
- W2488552272 hasAuthorship W2488552272A5041736676 @default.
- W2488552272 hasAuthorship W2488552272A5043293243 @default.
- W2488552272 hasAuthorship W2488552272A5056290289 @default.
- W2488552272 hasAuthorship W2488552272A5072157756 @default.
- W2488552272 hasAuthorship W2488552272A5079169749 @default.
- W2488552272 hasBestOaLocation W24885522722 @default.
- W2488552272 hasConcept C111919701 @default.
- W2488552272 hasConcept C114466953 @default.
- W2488552272 hasConcept C115961682 @default.
- W2488552272 hasConcept C119857082 @default.
- W2488552272 hasConcept C124101348 @default.
- W2488552272 hasConcept C124504099 @default.
- W2488552272 hasConcept C136764020 @default.
- W2488552272 hasConcept C144133560 @default.
- W2488552272 hasConcept C151730666 @default.
- W2488552272 hasConcept C154945302 @default.
- W2488552272 hasConcept C162853370 @default.
- W2488552272 hasConcept C199360897 @default.
- W2488552272 hasConcept C199579030 @default.
- W2488552272 hasConcept C2776321320 @default.
- W2488552272 hasConcept C2779343474 @default.
- W2488552272 hasConcept C31972630 @default.
- W2488552272 hasConcept C41008148 @default.
- W2488552272 hasConcept C62230096 @default.
- W2488552272 hasConcept C86251818 @default.
- W2488552272 hasConcept C86803240 @default.
- W2488552272 hasConcept C89600930 @default.
- W2488552272 hasConcept C9417928 @default.
- W2488552272 hasConcept C98045186 @default.
- W2488552272 hasConceptScore W2488552272C111919701 @default.
- W2488552272 hasConceptScore W2488552272C114466953 @default.
- W2488552272 hasConceptScore W2488552272C115961682 @default.
- W2488552272 hasConceptScore W2488552272C119857082 @default.
- W2488552272 hasConceptScore W2488552272C124101348 @default.
- W2488552272 hasConceptScore W2488552272C124504099 @default.
- W2488552272 hasConceptScore W2488552272C136764020 @default.
- W2488552272 hasConceptScore W2488552272C144133560 @default.
- W2488552272 hasConceptScore W2488552272C151730666 @default.
- W2488552272 hasConceptScore W2488552272C154945302 @default.
- W2488552272 hasConceptScore W2488552272C162853370 @default.
- W2488552272 hasConceptScore W2488552272C199360897 @default.
- W2488552272 hasConceptScore W2488552272C199579030 @default.
- W2488552272 hasConceptScore W2488552272C2776321320 @default.
- W2488552272 hasConceptScore W2488552272C2779343474 @default.
- W2488552272 hasConceptScore W2488552272C31972630 @default.
- W2488552272 hasConceptScore W2488552272C41008148 @default.
- W2488552272 hasConceptScore W2488552272C62230096 @default.
- W2488552272 hasConceptScore W2488552272C86251818 @default.
- W2488552272 hasConceptScore W2488552272C86803240 @default.
- W2488552272 hasConceptScore W2488552272C89600930 @default.
- W2488552272 hasConceptScore W2488552272C9417928 @default.
- W2488552272 hasConceptScore W2488552272C98045186 @default.