Matches in SemOpenAlex for { <https://semopenalex.org/work/W2489055773> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2489055773 abstract "~Received 12 September 2003; accepted 15 December 2003; published 14 May 2004!Over the past decade a new family of optoelectronic devices has emerged whose performance isenhanced by placing the active device structure inside a Fabry–Perot resonant microcavity @P. E.Green, IEEE Spectrum 13 ~2002!#. The increased optical field allows photodetectors to be madethinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonantwavelengths. We have demonstrated a variety of resonant cavity enhanced ~RCE! photodetectors incompound semiconductors @B. Yang, J. D. Schaub, S. M. Csutak, D. J. Rogers, and J. C. Campbell,IEEE Photonics Technol. Lett. 15, 745 ~2003!# and Si @M. K. Emsley, O. I. Dosunmu, and M. S.U¨nlu¨, IEEE J. Selected Topics Quantum Electron. 8, 948 ~2002!#, operating at opticalcommunication wavelengths ranging from 850 nm to 1550 nm. The focus of this article is on Siphotodetectors and arrays. High bandwidth short distance communications standards are beingdeveloped based on parallel optical interconnect fiber arrays to meet the needs of increasing datarates of interchip communication in modern computer architecture. To ensure that this standardbecomes an attractive option for computer systems, low cost components must be implemented onboth the transmitting and receiving end of the fibers. To meet this low cost requirement silicon basedreceiver circuits are the most viable option, however, high speed, high efficiency siliconphotodetectors present a technical challenge. Commercially reproducible silicon wafers with a highreflectance buried distributed Bragg reflector ~DBR! have been designed and fabricated @M. K.Emsley, O. I. Dosunmu, and M. S. U¨nlu¨, IEEE J. Selected Topics Quantum Electron. 8, 948 ~2002!#.The substrates consist of a two-period, 90% reflecting, DBR fabricated using a doublesilicon-on-insulator~SOI! process. Resonant-cavity-enhanced~RCE! Si photodetectors have beenfabricated with 40% quantum efficiency at 850 nm and a FWHM of 29 ps suitable for 10 Gbps datacommunications. Recently, 1312 photodetector arrays have been fabricated, packaged, and testedwith silicon based amplifiers to demonstrate the feasibility of a low cost solution for opticalinterconnects. © 2004 American Vacuum Society. @DOI: 10.1116/1.1647591#I. INTRODUCTIONOptical interconnects will impact the future of not onlythe telecommunications industry, but also the entire comput-ing industry. It may sound like a bold statement; the comput-ing industry has been getting along quite well for decades,but a simple look at the numbers will tell the story. Figure 1shows the growth in bandwidth for CPU’s in comparison tothe speed of the peripheral bus. It is clear that for the pasttwo decades a chasm has been opening between the two. Onecan consider the processing power of a computer to be in-herently serial in nature, combining input/output ~I/O! andCPU speeds. When I/O lags CPU speed by an order of mag-nitude, the computational throughput of the computer is nolonger determined by the CPU. In this situation, the CPUbecomes a commodity within computer architecture, whichis clearly something that major microprocessor manufactur-ers have strived to avoid for many years.The telecommunications industry has made huge invest-ments in the long-distance high bandwidth links that cancarry terabits of information, but fiber to the home remainselusive and many people still use dial-up modem access. Aninteresting point is that data can be sent 3000 miles acrossthe Atlantic Ocean in less time then it takes to go the 3 in.from the memory to the processor. Paul Green wrote in theDecember issue of IEEE Spectrum, ‘‘Both computers and thecommon carriers’ systems run at multiple tens of gigabits persecond. Dial-up modems carry, at best, 50 kb/s—nowherenear enough to support the innovative new services on whichthe future prosperity of both the telecom and computer in-dustries depends.’’" @default.
- W2489055773 created "2016-08-23" @default.
- W2489055773 creator A5021169904 @default.
- W2489055773 creator A5030427987 @default.
- W2489055773 creator A5036201173 @default.
- W2489055773 creator A5072423303 @default.
- W2489055773 date "2003-01-01" @default.
- W2489055773 modified "2023-09-26" @default.
- W2489055773 title "High-speed Si Resonant Cavity Enhanced Photodetectors and Arrays" @default.
- W2489055773 cites W2111385852 @default.
- W2489055773 cites W2127557102 @default.
- W2489055773 cites W2462621557 @default.
- W2489055773 hasPublicationYear "2003" @default.
- W2489055773 type Work @default.
- W2489055773 sameAs 2489055773 @default.
- W2489055773 citedByCount "0" @default.
- W2489055773 crossrefType "journal-article" @default.
- W2489055773 hasAuthorship W2489055773A5021169904 @default.
- W2489055773 hasAuthorship W2489055773A5030427987 @default.
- W2489055773 hasAuthorship W2489055773A5036201173 @default.
- W2489055773 hasAuthorship W2489055773A5072423303 @default.
- W2489055773 hasConcept C119599485 @default.
- W2489055773 hasConcept C120665830 @default.
- W2489055773 hasConcept C121332964 @default.
- W2489055773 hasConcept C123745756 @default.
- W2489055773 hasConcept C127413603 @default.
- W2489055773 hasConcept C134146338 @default.
- W2489055773 hasConcept C160671074 @default.
- W2489055773 hasConcept C192562407 @default.
- W2489055773 hasConcept C20788544 @default.
- W2489055773 hasConcept C23125352 @default.
- W2489055773 hasConcept C2776257435 @default.
- W2489055773 hasConcept C41008148 @default.
- W2489055773 hasConcept C49040817 @default.
- W2489055773 hasConcept C76155785 @default.
- W2489055773 hasConceptScore W2489055773C119599485 @default.
- W2489055773 hasConceptScore W2489055773C120665830 @default.
- W2489055773 hasConceptScore W2489055773C121332964 @default.
- W2489055773 hasConceptScore W2489055773C123745756 @default.
- W2489055773 hasConceptScore W2489055773C127413603 @default.
- W2489055773 hasConceptScore W2489055773C134146338 @default.
- W2489055773 hasConceptScore W2489055773C160671074 @default.
- W2489055773 hasConceptScore W2489055773C192562407 @default.
- W2489055773 hasConceptScore W2489055773C20788544 @default.
- W2489055773 hasConceptScore W2489055773C23125352 @default.
- W2489055773 hasConceptScore W2489055773C2776257435 @default.
- W2489055773 hasConceptScore W2489055773C41008148 @default.
- W2489055773 hasConceptScore W2489055773C49040817 @default.
- W2489055773 hasConceptScore W2489055773C76155785 @default.
- W2489055773 hasLocation W24890557731 @default.
- W2489055773 hasOpenAccess W2489055773 @default.
- W2489055773 hasPrimaryLocation W24890557731 @default.
- W2489055773 hasRelatedWork W12600006 @default.
- W2489055773 hasRelatedWork W1774823958 @default.
- W2489055773 hasRelatedWork W1990777759 @default.
- W2489055773 hasRelatedWork W2007515985 @default.
- W2489055773 hasRelatedWork W2025015341 @default.
- W2489055773 hasRelatedWork W2040220629 @default.
- W2489055773 hasRelatedWork W2054852365 @default.
- W2489055773 hasRelatedWork W2054932924 @default.
- W2489055773 hasRelatedWork W2084364192 @default.
- W2489055773 hasRelatedWork W2129359458 @default.
- W2489055773 hasRelatedWork W2527917254 @default.
- W2489055773 hasRelatedWork W2550003623 @default.
- W2489055773 hasRelatedWork W2573780982 @default.
- W2489055773 hasRelatedWork W2589108624 @default.
- W2489055773 hasRelatedWork W2893484325 @default.
- W2489055773 hasRelatedWork W2984600205 @default.
- W2489055773 hasRelatedWork W3009983062 @default.
- W2489055773 hasRelatedWork W3092648331 @default.
- W2489055773 hasRelatedWork W2469681269 @default.
- W2489055773 hasRelatedWork W2525750891 @default.
- W2489055773 isParatext "false" @default.
- W2489055773 isRetracted "false" @default.
- W2489055773 magId "2489055773" @default.
- W2489055773 workType "article" @default.