Matches in SemOpenAlex for { <https://semopenalex.org/work/W2489228049> ?p ?o ?g. }
- W2489228049 endingPage "273" @default.
- W2489228049 startingPage "251" @default.
- W2489228049 abstract "At Macmillan Pass (YT, Canada), the hydrothermal vent complexes beneath two shale-hosted massive sulphide (SHMS) deposits (Tom, Jason) are well preserved within Late Devonian strata. These deposits provide a unique opportunity to constrain key geochemical parameters (temperature, salinity, pH, fO2, ΣS) that are critical for metal transport and deposition in SHMS systems, and to evaluate the interaction between hydrothermal fluids and the mudstone host rock. This has been achieved using a combination of detailed petrography, isotopic techniques (δ34S, δ13C and δ18O values), carbonate rare earth element analysis (LA-ICP-MS), fluid inclusion analysis (microthermometry, gas analysis via incremental crush fast scan mass spectrometry), and thermodynamic modelling. Two main paragenetic stages are preserved in both vent complexes: Stage 1 comprises pervasive ankerite alteration of the organic-rich mudstone host rock and crosscutting stockwork ankerite veining (±pyrobitumen, pyrite and quartz) and; Stage 2 consists of main stage massive sulphide (galena-pyrrhotite-pyrite ± chalcopyrite-sphalerite) and siderite (±quartz and barytocalcite) mineralisation. Co-variation of δ18O and δ13C values in ankerite can be described by temperature dependent fractionation and fluid rock interaction. Together with fluid inclusion microthermometry, this provides evidence of a steep thermal gradient (from 300 to ∼100 °C) over approximately 15 m stratigraphic depth, temporally and spatially constrained within the paragenesis of both vent complexes and developed under shallow lithostatic (<1 km; 250 bars) to hydrostatic (<400 m; 40 bars) conditions. There is evidence of mixing between diagenetic and hydrothermal fluids recorded in chondrite-normalised rare earth element (REE) profiles of ankerite and siderite. Middle REE enrichments and superchondritic Y/Ho ratios (>28), characteristic of diagenetic fluids, are coupled with positive europium anomalies and variable light REE depletion, which are more consistent with chloride complexation in hot (>250 °C) hydrothermal fluids. In this shallow sub-seafloor setting, thermal alteration of organic carbon in the immature, chemically reactive mudstones also had an important role in the evolution of fluid chemistry. Reduced sulphur generation via thermochemical reduction of Late Devonian seawater sulphate produced positive δ34S values in sulphide minerals (+7.5‰ to +19.5‰), coupled with a suite of volatile components (CO2, CH4, C1–C4 hydrocarbons, N2) trapped in Stage 2 quartz. Many of these geochemical features developed during the final stages of fluid ascent, in a system where the fluid cooled close to the site of mineralisation. Using this information, we have modelled the metal transporting capacity of the deep hydrothermal fluid, which even at modest salinities (6 wt.% NaCl) was high (≫100 ppm Pb, Zn), owing to the combined effects of high temperature and low pH (⩽4.5). Therefore in SHMS systems, enhanced geothermal gradients and rapid fluid ascent (with minimal fluid cooling) are considered to be the most important factors for transporting high concentrations of base metals to the site of mineralisation." @default.
- W2489228049 created "2016-08-23" @default.
- W2489228049 creator A5028980852 @default.
- W2489228049 creator A5040155085 @default.
- W2489228049 creator A5086157836 @default.
- W2489228049 creator A5088233618 @default.
- W2489228049 creator A5091712441 @default.
- W2489228049 date "2016-11-01" @default.
- W2489228049 modified "2023-09-25" @default.
- W2489228049 title "The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada)" @default.
- W2489228049 cites W112581710 @default.
- W2489228049 cites W1966431458 @default.
- W2489228049 cites W1974924765 @default.
- W2489228049 cites W1975413147 @default.
- W2489228049 cites W1981189009 @default.
- W2489228049 cites W1981446681 @default.
- W2489228049 cites W1981916936 @default.
- W2489228049 cites W1982560803 @default.
- W2489228049 cites W1985480593 @default.
- W2489228049 cites W1985988495 @default.
- W2489228049 cites W1987844542 @default.
- W2489228049 cites W1991730319 @default.
- W2489228049 cites W1993457238 @default.
- W2489228049 cites W1994412751 @default.
- W2489228049 cites W2000177754 @default.
- W2489228049 cites W2004888265 @default.
- W2489228049 cites W2006593586 @default.
- W2489228049 cites W2006815492 @default.
- W2489228049 cites W2009537421 @default.
- W2489228049 cites W2010864759 @default.
- W2489228049 cites W2014756319 @default.
- W2489228049 cites W2016771305 @default.
- W2489228049 cites W2017395325 @default.
- W2489228049 cites W2018418225 @default.
- W2489228049 cites W2022149270 @default.
- W2489228049 cites W2026608718 @default.
- W2489228049 cites W2027133863 @default.
- W2489228049 cites W2027996706 @default.
- W2489228049 cites W2028336294 @default.
- W2489228049 cites W2031047203 @default.
- W2489228049 cites W2031190434 @default.
- W2489228049 cites W2032466071 @default.
- W2489228049 cites W2033986829 @default.
- W2489228049 cites W2035572003 @default.
- W2489228049 cites W2037236794 @default.
- W2489228049 cites W2042175102 @default.
- W2489228049 cites W2044151623 @default.
- W2489228049 cites W2044537972 @default.
- W2489228049 cites W2044647613 @default.
- W2489228049 cites W2047367894 @default.
- W2489228049 cites W2048435637 @default.
- W2489228049 cites W2057355903 @default.
- W2489228049 cites W2058559710 @default.
- W2489228049 cites W2066458246 @default.
- W2489228049 cites W2070849214 @default.
- W2489228049 cites W2072636876 @default.
- W2489228049 cites W2075817993 @default.
- W2489228049 cites W2077031590 @default.
- W2489228049 cites W2078288112 @default.
- W2489228049 cites W2081507647 @default.
- W2489228049 cites W2081693429 @default.
- W2489228049 cites W2082498323 @default.
- W2489228049 cites W2082972472 @default.
- W2489228049 cites W2083186597 @default.
- W2489228049 cites W2084239657 @default.
- W2489228049 cites W2087280943 @default.
- W2489228049 cites W2089507620 @default.
- W2489228049 cites W2096715383 @default.
- W2489228049 cites W2097386376 @default.
- W2489228049 cites W2099372662 @default.
- W2489228049 cites W2102311915 @default.
- W2489228049 cites W2110767358 @default.
- W2489228049 cites W2116947811 @default.
- W2489228049 cites W2118865991 @default.
- W2489228049 cites W2126945812 @default.
- W2489228049 cites W2133275670 @default.
- W2489228049 cites W2133775865 @default.
- W2489228049 cites W2150925076 @default.
- W2489228049 cites W2158816656 @default.
- W2489228049 cites W2163004925 @default.
- W2489228049 cites W2164581556 @default.
- W2489228049 cites W2165367870 @default.
- W2489228049 cites W2167102913 @default.
- W2489228049 cites W2170770997 @default.
- W2489228049 cites W2171556834 @default.
- W2489228049 cites W2285314033 @default.
- W2489228049 cites W2330959412 @default.
- W2489228049 cites W2340830880 @default.
- W2489228049 cites W2460846829 @default.
- W2489228049 cites W2883388377 @default.
- W2489228049 cites W2982100276 @default.
- W2489228049 cites W4243082928 @default.
- W2489228049 cites W567830131 @default.
- W2489228049 doi "https://doi.org/10.1016/j.gca.2016.07.020" @default.
- W2489228049 hasPublicationYear "2016" @default.
- W2489228049 type Work @default.
- W2489228049 sameAs 2489228049 @default.
- W2489228049 citedByCount "31" @default.