Matches in SemOpenAlex for { <https://semopenalex.org/work/W2489661937> ?p ?o ?g. }
- W2489661937 abstract "Longitudinal data sources, such as electronic health records (EHRs), are very valuable for monitoring adverse drug events (ADEs). However, ADEs are heavily under-reported in EHRs. Using machine learning algorithms to automatically detect patients that should have had ADEs reported in their health records is an efficient and effective solution. One of the challenges to that end is how to take into account the temporality of clinical events, which are time stamped in EHRs, and providing these as features for machine learning algorithms to exploit. Previous research on this topic suggests that representing EHR data as a bag of temporally weighted clinical events is promising; however, the weights were in that case pre-assigned according to their time stamps, which is limited and potentially less accurate. This study therefore focuses on how to learn weights that effectively take into account the temporality and importance of clinical events for ADE detection.Variable importance obtained from the random forest learning algorithm is used for extracting temporal weights. Two strategies are proposed for applying the learned weights: weighted aggregation and weighted sampling. The first strategy aggregates the weighted clinical events from different time windows to form new features; the second strategy retains the original features but samples them by using their weights as probabilities when building each tree in the forest. The predictive performance of random forest models using the learned weights with the two strategies is compared to using pre-assigned weights. In addition, to assess the sensitivity of the weight-learning procedure, weights from different granularity levels are evaluated and compared.In the weighted sampling strategy, using learned weights significantly improves the predictive performance, in comparison to using pre-assigned weights; however, there is no significant difference between them in the weighted aggregation strategy. Moreover, the granularity of the weight learning procedure has a significant impact on the former, but not on the latter.Learning temporal weights is significantly beneficial in terms of predictive performance with the weighted sampling strategy. Moreover, weighted aggregation generally diminishes the impact of temporal weighting of the clinical events, irrespective of whether the weights are pre-assigned or learned." @default.
- W2489661937 created "2016-08-23" @default.
- W2489661937 creator A5011845704 @default.
- W2489661937 creator A5046274853 @default.
- W2489661937 date "2016-07-01" @default.
- W2489661937 modified "2023-09-25" @default.
- W2489661937 title "Learning temporal weights of clinical events using variable importance" @default.
- W2489661937 cites W1152166452 @default.
- W2489661937 cites W1875061881 @default.
- W2489661937 cites W1988304729 @default.
- W2489661937 cites W1991567209 @default.
- W2489661937 cites W1992746042 @default.
- W2489661937 cites W2009890917 @default.
- W2489661937 cites W2015168986 @default.
- W2489661937 cites W2015462679 @default.
- W2489661937 cites W2018588587 @default.
- W2489661937 cites W2031299502 @default.
- W2489661937 cites W2041888817 @default.
- W2489661937 cites W2043175314 @default.
- W2489661937 cites W2079842711 @default.
- W2489661937 cites W2115629999 @default.
- W2489661937 cites W2133816312 @default.
- W2489661937 cites W2135102212 @default.
- W2489661937 cites W2187629976 @default.
- W2489661937 cites W2188457542 @default.
- W2489661937 cites W2209812445 @default.
- W2489661937 cites W2212544902 @default.
- W2489661937 cites W2246742356 @default.
- W2489661937 cites W2911964244 @default.
- W2489661937 doi "https://doi.org/10.1186/s12911-016-0311-6" @default.
- W2489661937 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4965710" @default.
- W2489661937 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27459993" @default.
- W2489661937 hasPublicationYear "2016" @default.
- W2489661937 type Work @default.
- W2489661937 sameAs 2489661937 @default.
- W2489661937 citedByCount "14" @default.
- W2489661937 countsByYear W24896619372017 @default.
- W2489661937 countsByYear W24896619372018 @default.
- W2489661937 countsByYear W24896619372019 @default.
- W2489661937 countsByYear W24896619372020 @default.
- W2489661937 countsByYear W24896619372021 @default.
- W2489661937 countsByYear W24896619372022 @default.
- W2489661937 countsByYear W24896619372023 @default.
- W2489661937 crossrefType "journal-article" @default.
- W2489661937 hasAuthorship W2489661937A5011845704 @default.
- W2489661937 hasAuthorship W2489661937A5046274853 @default.
- W2489661937 hasBestOaLocation W24896619371 @default.
- W2489661937 hasConcept C111472728 @default.
- W2489661937 hasConcept C111919701 @default.
- W2489661937 hasConcept C113174947 @default.
- W2489661937 hasConcept C119857082 @default.
- W2489661937 hasConcept C124101348 @default.
- W2489661937 hasConcept C134306372 @default.
- W2489661937 hasConcept C138885662 @default.
- W2489661937 hasConcept C141679102 @default.
- W2489661937 hasConcept C154945302 @default.
- W2489661937 hasConcept C160735492 @default.
- W2489661937 hasConcept C162324750 @default.
- W2489661937 hasConcept C165696696 @default.
- W2489661937 hasConcept C169258074 @default.
- W2489661937 hasConcept C177774035 @default.
- W2489661937 hasConcept C3019952477 @default.
- W2489661937 hasConcept C33923547 @default.
- W2489661937 hasConcept C38652104 @default.
- W2489661937 hasConcept C41008148 @default.
- W2489661937 hasConcept C50522688 @default.
- W2489661937 hasConceptScore W2489661937C111472728 @default.
- W2489661937 hasConceptScore W2489661937C111919701 @default.
- W2489661937 hasConceptScore W2489661937C113174947 @default.
- W2489661937 hasConceptScore W2489661937C119857082 @default.
- W2489661937 hasConceptScore W2489661937C124101348 @default.
- W2489661937 hasConceptScore W2489661937C134306372 @default.
- W2489661937 hasConceptScore W2489661937C138885662 @default.
- W2489661937 hasConceptScore W2489661937C141679102 @default.
- W2489661937 hasConceptScore W2489661937C154945302 @default.
- W2489661937 hasConceptScore W2489661937C160735492 @default.
- W2489661937 hasConceptScore W2489661937C162324750 @default.
- W2489661937 hasConceptScore W2489661937C165696696 @default.
- W2489661937 hasConceptScore W2489661937C169258074 @default.
- W2489661937 hasConceptScore W2489661937C177774035 @default.
- W2489661937 hasConceptScore W2489661937C3019952477 @default.
- W2489661937 hasConceptScore W2489661937C33923547 @default.
- W2489661937 hasConceptScore W2489661937C38652104 @default.
- W2489661937 hasConceptScore W2489661937C41008148 @default.
- W2489661937 hasConceptScore W2489661937C50522688 @default.
- W2489661937 hasIssue "S2" @default.
- W2489661937 hasLocation W24896619371 @default.
- W2489661937 hasLocation W24896619372 @default.
- W2489661937 hasLocation W24896619373 @default.
- W2489661937 hasLocation W24896619374 @default.
- W2489661937 hasOpenAccess W2489661937 @default.
- W2489661937 hasPrimaryLocation W24896619371 @default.
- W2489661937 hasRelatedWork W2911455822 @default.
- W2489661937 hasRelatedWork W3018959556 @default.
- W2489661937 hasRelatedWork W3174196512 @default.
- W2489661937 hasRelatedWork W3211546796 @default.
- W2489661937 hasRelatedWork W4281560664 @default.
- W2489661937 hasRelatedWork W4281616679 @default.
- W2489661937 hasRelatedWork W4293525103 @default.
- W2489661937 hasRelatedWork W4308191010 @default.