Matches in SemOpenAlex for { <https://semopenalex.org/work/W2489720588> ?p ?o ?g. }
- W2489720588 endingPage "646" @default.
- W2489720588 startingPage "637" @default.
- W2489720588 abstract "Abstract This comprehensive study declares experimentally the effect of diffusion annealing temperature in a range of 600 °C–850 °C on the electrical, superconducting and microstructural properties of the Au-diffusion-doped Bi-2212 polycrystalline compounds with the aid of the available experimental methods such as bulk density, dc resistivity (ρ-T), transport critical current density (Jc), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) measurements. The experimental findings of the dc electrical resistivity and XRD investigations present that the Au impurities are effectively entered into the crystalline structure of the Bi-2212 system. In fact, the EDX examinations confirm that the Au impurities may mostly be substituted for the Sr-sites in the Bi-2212 crystal matrix due to the increase of electronegativity. Besides, the Jc measurements present that highly dispersed Au impurities with higher electronegativity bind tightly to form the effective nucleation centers through the intra-grain and inter-grain boundaries for the flux pinning of the vortices in the Bi-2212 crystal structure. Furthermore, it is observed that the vital characteristics, being responsible for newly/novel and feasible market areas for the universe economy, improve significantly with the increment in the diffusion annealing temperature up to the value of 800 °C as a consequence of the retrogression in the disorders, dislocations, defects, lattice strains, misorientations and local structural distortions in the Cu-O2 consecutively stacked layers, leading to the development of the metastability (enhancement of the hole trap energy) belonging to the superconducting materials studied. However, after the critical temperature point, the properties recrudesce dramatically due to the penetration of excess Au foreign impurities in the Bi-2212 crystal structure. In more details, the XRD measurement findings display that the diffusion annealing temperature promotes significantly the high phase as a consequence of the increment in both the average crystallite size and c-axis length or decrement in the constant parameter a. In this respect, the solid compound produced at the annealing temperature of 800 °C obtains the maximum (minimum) c-axis length of 35.43 A (5.32 A) and average grain size of 68.7 nm. Similarly, the same sample exhibits the smoothest and densest surface morphology with the best interaction between the superconducting grains and largest crystalline distribution. Finally, the highest T c o n s e t and T c o f f s e t values are noted to be about 89.78 K and 89.01 K, respectively. This is attributed to the fact that the Au nanoparticles penetrated transit from inherently overdoped nature of the Bi-2212 compound to optimally doped state. To sum up, the annealing temperature of 800 °C favors the Bi-2212 superconducting ceramics for usage in the large scale applications." @default.
- W2489720588 created "2016-08-23" @default.
- W2489720588 creator A5015575828 @default.
- W2489720588 creator A5046457267 @default.
- W2489720588 creator A5048987182 @default.
- W2489720588 creator A5078410253 @default.
- W2489720588 date "2016-12-01" @default.
- W2489720588 modified "2023-10-18" @default.
- W2489720588 title "Examination of effective nucleation centers for flux pinning of vortices and optimum diffusion annealing temperature for Au-diffusion-doped Bi-2212 polycrystalline compound" @default.
- W2489720588 cites W1577738633 @default.
- W2489720588 cites W1582654312 @default.
- W2489720588 cites W1614034329 @default.
- W2489720588 cites W1902534649 @default.
- W2489720588 cites W1963541159 @default.
- W2489720588 cites W1968334820 @default.
- W2489720588 cites W1969131542 @default.
- W2489720588 cites W1976817855 @default.
- W2489720588 cites W1979272061 @default.
- W2489720588 cites W1979434604 @default.
- W2489720588 cites W1984053801 @default.
- W2489720588 cites W1986881207 @default.
- W2489720588 cites W1991659681 @default.
- W2489720588 cites W1993774413 @default.
- W2489720588 cites W1995217207 @default.
- W2489720588 cites W1997575816 @default.
- W2489720588 cites W1997994003 @default.
- W2489720588 cites W2001433848 @default.
- W2489720588 cites W2004248856 @default.
- W2489720588 cites W2005476521 @default.
- W2489720588 cites W2008984770 @default.
- W2489720588 cites W2009568215 @default.
- W2489720588 cites W2011243284 @default.
- W2489720588 cites W2015726369 @default.
- W2489720588 cites W2019391554 @default.
- W2489720588 cites W2021501267 @default.
- W2489720588 cites W2025724090 @default.
- W2489720588 cites W2026199827 @default.
- W2489720588 cites W2026516042 @default.
- W2489720588 cites W2028358874 @default.
- W2489720588 cites W2031295245 @default.
- W2489720588 cites W2034144918 @default.
- W2489720588 cites W2034166894 @default.
- W2489720588 cites W2041089943 @default.
- W2489720588 cites W2048072145 @default.
- W2489720588 cites W2058823825 @default.
- W2489720588 cites W2061848137 @default.
- W2489720588 cites W2061905317 @default.
- W2489720588 cites W2062986504 @default.
- W2489720588 cites W2075842931 @default.
- W2489720588 cites W2084577780 @default.
- W2489720588 cites W2086683228 @default.
- W2489720588 cites W2087257902 @default.
- W2489720588 cites W2088323973 @default.
- W2489720588 cites W2096062088 @default.
- W2489720588 cites W2096244808 @default.
- W2489720588 cites W2108929507 @default.
- W2489720588 cites W2111793698 @default.
- W2489720588 cites W2113646177 @default.
- W2489720588 cites W2114487245 @default.
- W2489720588 cites W2126735569 @default.
- W2489720588 cites W2130598656 @default.
- W2489720588 cites W2166941567 @default.
- W2489720588 cites W2242531125 @default.
- W2489720588 cites W2367309251 @default.
- W2489720588 cites W2462454497 @default.
- W2489720588 cites W267487687 @default.
- W2489720588 cites W3104526064 @default.
- W2489720588 cites W370316010 @default.
- W2489720588 doi "https://doi.org/10.1016/j.jallcom.2016.07.203" @default.
- W2489720588 hasPublicationYear "2016" @default.
- W2489720588 type Work @default.
- W2489720588 sameAs 2489720588 @default.
- W2489720588 citedByCount "20" @default.
- W2489720588 countsByYear W24897205882017 @default.
- W2489720588 countsByYear W24897205882018 @default.
- W2489720588 countsByYear W24897205882019 @default.
- W2489720588 countsByYear W24897205882020 @default.
- W2489720588 countsByYear W24897205882021 @default.
- W2489720588 countsByYear W24897205882022 @default.
- W2489720588 crossrefType "journal-article" @default.
- W2489720588 hasAuthorship W2489720588A5015575828 @default.
- W2489720588 hasAuthorship W2489720588A5046457267 @default.
- W2489720588 hasAuthorship W2489720588A5048987182 @default.
- W2489720588 hasAuthorship W2489720588A5078410253 @default.
- W2489720588 hasConcept C109613756 @default.
- W2489720588 hasConcept C11922408 @default.
- W2489720588 hasConcept C121332964 @default.
- W2489720588 hasConcept C137637335 @default.
- W2489720588 hasConcept C140820882 @default.
- W2489720588 hasConcept C159985019 @default.
- W2489720588 hasConcept C171250308 @default.
- W2489720588 hasConcept C191897082 @default.
- W2489720588 hasConcept C192562407 @default.
- W2489720588 hasConcept C26873012 @default.
- W2489720588 hasConcept C2777855556 @default.
- W2489720588 hasConcept C2987373456 @default.
- W2489720588 hasConcept C49040817 @default.
- W2489720588 hasConcept C54101563 @default.