Matches in SemOpenAlex for { <https://semopenalex.org/work/W2489757978> ?p ?o ?g. }
- W2489757978 endingPage "790" @default.
- W2489757978 startingPage "755" @default.
- W2489757978 abstract "In a Hilbert setting $H$, we study the asymptotic behavior of the trajectories of nonautonomous evolution equations $dot x(t)+A_t(x(t))ni 0$, where for each $tgeq 0$, $A_t:Hrightrightarrows H$ denotes a maximal monotone operator. We provide general conditions guaranteeing the weak ergodic convergence of each trajectory $x(cdot )$ to a zero of a limit maximal monotone operator $A_infty$ as the time variable $t$ tends to $+infty$. The crucial point is to use the Brézis-Haraux function, or equivalently the Fitzpatrick function, to express at which rate the excess of $mathrm {gph} A_infty$ over $mathrm {gph} A_t$ tends to zero. This approach gives a sharp and unifying view of this subject. In the case of operators $A_t= partial varphi _t$ which are subdifferentials of proper closed convex functions $varphi _t$, we show convergence results for the trajectories. Then, we specialize our results to multiscale evolution equations and obtain asymptotic properties of hierarchical minimization and selection of viscosity solutions. Illustrations are given in the field of coupled systems and partial differential equations." @default.
- W2489757978 created "2016-08-23" @default.
- W2489757978 creator A5038818485 @default.
- W2489757978 creator A5044434769 @default.
- W2489757978 creator A5071460705 @default.
- W2489757978 date "2017-07-13" @default.
- W2489757978 modified "2023-10-18" @default.
- W2489757978 title "Asymptotic behavior of nonautonomous monotone and subgradient evolution equations" @default.
- W2489757978 cites W106485379 @default.
- W2489757978 cites W118263408 @default.
- W2489757978 cites W1485541141 @default.
- W2489757978 cites W1501476807 @default.
- W2489757978 cites W1503691797 @default.
- W2489757978 cites W1517403807 @default.
- W2489757978 cites W158315004 @default.
- W2489757978 cites W1653619892 @default.
- W2489757978 cites W1943862610 @default.
- W2489757978 cites W194839837 @default.
- W2489757978 cites W1967598881 @default.
- W2489757978 cites W1968699683 @default.
- W2489757978 cites W1996977583 @default.
- W2489757978 cites W1998576973 @default.
- W2489757978 cites W2005833769 @default.
- W2489757978 cites W2010091754 @default.
- W2489757978 cites W2013921128 @default.
- W2489757978 cites W2019613464 @default.
- W2489757978 cites W2035565712 @default.
- W2489757978 cites W2053487511 @default.
- W2489757978 cites W205960364 @default.
- W2489757978 cites W2077726563 @default.
- W2489757978 cites W2091760073 @default.
- W2489757978 cites W2094455525 @default.
- W2489757978 cites W2182808953 @default.
- W2489757978 cites W2299572537 @default.
- W2489757978 cites W2331474636 @default.
- W2489757978 cites W2353948421 @default.
- W2489757978 cites W2569816327 @default.
- W2489757978 cites W2963705414 @default.
- W2489757978 cites W2963785148 @default.
- W2489757978 cites W2964351573 @default.
- W2489757978 cites W2467035309 @default.
- W2489757978 doi "https://doi.org/10.1090/tran/6965" @default.
- W2489757978 hasPublicationYear "2017" @default.
- W2489757978 type Work @default.
- W2489757978 sameAs 2489757978 @default.
- W2489757978 citedByCount "20" @default.
- W2489757978 countsByYear W24897579782016 @default.
- W2489757978 countsByYear W24897579782017 @default.
- W2489757978 countsByYear W24897579782018 @default.
- W2489757978 countsByYear W24897579782019 @default.
- W2489757978 countsByYear W24897579782020 @default.
- W2489757978 countsByYear W24897579782021 @default.
- W2489757978 countsByYear W24897579782022 @default.
- W2489757978 countsByYear W24897579782023 @default.
- W2489757978 crossrefType "journal-article" @default.
- W2489757978 hasAuthorship W2489757978A5038818485 @default.
- W2489757978 hasAuthorship W2489757978A5044434769 @default.
- W2489757978 hasAuthorship W2489757978A5071460705 @default.
- W2489757978 hasBestOaLocation W24897579781 @default.
- W2489757978 hasConcept C104317684 @default.
- W2489757978 hasConcept C112680207 @default.
- W2489757978 hasConcept C122044880 @default.
- W2489757978 hasConcept C12715386 @default.
- W2489757978 hasConcept C134306372 @default.
- W2489757978 hasConcept C138885662 @default.
- W2489757978 hasConcept C14036430 @default.
- W2489757978 hasConcept C145446738 @default.
- W2489757978 hasConcept C158448853 @default.
- W2489757978 hasConcept C17020691 @default.
- W2489757978 hasConcept C185592680 @default.
- W2489757978 hasConcept C202444582 @default.
- W2489757978 hasConcept C2524010 @default.
- W2489757978 hasConcept C2780813799 @default.
- W2489757978 hasConcept C2834757 @default.
- W2489757978 hasConcept C33923547 @default.
- W2489757978 hasConcept C41895202 @default.
- W2489757978 hasConcept C55493867 @default.
- W2489757978 hasConcept C62799726 @default.
- W2489757978 hasConcept C78458016 @default.
- W2489757978 hasConcept C86339819 @default.
- W2489757978 hasConcept C86803240 @default.
- W2489757978 hasConcept C93779851 @default.
- W2489757978 hasConceptScore W2489757978C104317684 @default.
- W2489757978 hasConceptScore W2489757978C112680207 @default.
- W2489757978 hasConceptScore W2489757978C122044880 @default.
- W2489757978 hasConceptScore W2489757978C12715386 @default.
- W2489757978 hasConceptScore W2489757978C134306372 @default.
- W2489757978 hasConceptScore W2489757978C138885662 @default.
- W2489757978 hasConceptScore W2489757978C14036430 @default.
- W2489757978 hasConceptScore W2489757978C145446738 @default.
- W2489757978 hasConceptScore W2489757978C158448853 @default.
- W2489757978 hasConceptScore W2489757978C17020691 @default.
- W2489757978 hasConceptScore W2489757978C185592680 @default.
- W2489757978 hasConceptScore W2489757978C202444582 @default.
- W2489757978 hasConceptScore W2489757978C2524010 @default.
- W2489757978 hasConceptScore W2489757978C2780813799 @default.
- W2489757978 hasConceptScore W2489757978C2834757 @default.
- W2489757978 hasConceptScore W2489757978C33923547 @default.